Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: 25th Anniversary Volume. Dedicated in Memory and in Honor of George William Scott Blair. 23 July 1902 to 30 September 1987
Article type: Research Article
Authors: Nomura, Hideshi | Ishikawa, Chiharu | Komatsuda, Teruhiko | Ando, Joji | Kamiya, Akira
Affiliations: Research Institute of Applied Electricity, Hokkaido University, Sapporo, 060, Japan
Note: [] Accepted by: Editor E. Fukada
Abstract: To study the effect of fluid shear stress on cultured endothelial cells, we have developed an apparatus for the stress creation, which consists of a stainless steel disk driven by an electric DC motor and a stage to place a culture dish and to adjust the distance between the disk and the dish. When the disk is rotated, a concentric fluid movement occurs in the culture medium in the dish and exerts the shear stress on the endothelial cells cultured on the bottom of the dish. A theoretical analyses concerning the induced concentric flow velocity predicted that when the angular velocity of the disk rotation (ω) is slow enough to maintain a Reynolds’ number of the order of 10, the exerted wall shear stress τw on the endothelial cell monolayer is given for a constant as τw=μrω/d where μ is the viscosity of the medium, d the distance from the plate to the monolayer and r the radial distance from the center of the dish. When ω is varied in a sinusoidal mode τw also becomes sinusoidal, thus allowing to apply a pulsatile stress. In vitro experiments carried out to examine the validity of the theoretical results, using a suspension of polystyrene as a tracer with the ordinary culture medium and 99% ethanol, revealed excellent agreement of the measured velocity profiles with the predicted ones. The results demonstrated that the present apparatus can create both the steady and pulsatile wall shear stress on the culture cell layer as expected, unless Reynolds’ number greatly exceeds the level of 10.
Keywords: shear stress, cell culture, endothelial cell, rotating plate, steady flow, pulsatile flow
DOI: 10.3233/BIR-1988-25307
Journal: Biorheology, vol. 25, no. 3, pp. 461-470, 1988
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]