Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: 25th Anniversary Volume. Dedicated in Memory and in Honor of George William Scott Blair. 23 July 1902 to 30 September 1987
Article type: Research Article
Authors: Sutera, S.P.a | Nowak, M.D.a | Joist, J.H.b | Zeffren, D.J.b | Bauman, J.E.b
Affiliations: [a] Department of Mechanical Engineering, Washington University, St. Louis, Missouri, USA | [b] Departments of Internal Medicine and Pathology, St. Louis University School of Medicine, St. Louis, Missouri USA
Note: [] Accepted by: Editor R. Skalak
Abstract: Described is a special purpose cone-plate viscometer that is capable of acceleration or deceleration through a step change in speed in less than 0.7s. The speed of the rotating cone is controlled by a microcomputer which can be programmed to generate speed vs time ramp functions of variable slope. Prior calibration of motor power required to shear Newtonian fluids of known viscosity at various speeds provides the basis for determination of apparent suspension viscosity and enables the viscometer automatically to compensate for changing sample viscosity during shear. The viscometer was used to carry out a series of preliminary studies in which platelet-rich plasma (PRP) was subjected to continuous and pulsatile shear stress at 37°C. Shear-induced platelet aggregation (SIPAG) was significantly greater in response to pulsatile versus continuous shearing except at the lowest applied stress (10 dyn/cm2). Increases ranged from about 40 percent at a stress amplitude of 25 dyn/cm2 to nearly 55 percent at dyn/cm2 . This increasing trend with stress amplitude might be interpreted as a positive correlation between SIPAG and the loading rate. Dense granule release, as indicated by serotonin release, was dependent on both stress amplitude and number of pulses even at the higher stress where SIPAG was independent of pulse number.
Keywords: platelets, pulsatile shear stress
DOI: 10.3233/BIR-1988-25306
Journal: Biorheology, vol. 25, no. 3, pp. 449-459, 1988
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]