Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: 25th Anniversary Volume. Perspectives in Biorheology II. Festschrift for Syoten Oka
Guest editors: Eiichi Fukada and Takehiko Azuma
Article type: Research Article
Authors: Murata, T. | Secomb, T.W.
Affiliations: Department of Physiology, University of Arizona, Tucson, Arizona, USA
Abstract: A kinetic equation for rouleau formation in a simple shear flow is derived, based on several assumptions. These are (a) colliding rouleaux stick to one another with a certain probability to form a single rouleau; (b) simultaneous collisions between more than two rouleaux are negligible; (c) rouleaux are broken by a viscous force exerted by the suspending fluid on the surfaces of rouleaux; (d) when a rouleau is broken by viscous forces, only two fragments are formed. Based on a simple mathematical model, collision rate, sticking probability and degradation rate are obtained as functions of applied shear rate. From the solution of the kinetic equation, the average size of rouleaux is obtained as a function of time with shear rate as a parameter. It is shown that the average size of rouleaux increases monotonically with increasing time and tends to an equilibrium size. The average size of rouleaux in a dynamical equilibrium decreases monotonically with increasing shear rate and tends to one cell as shear rate approaches infinity. It is also found that the initial rate of rouleau formation increases with increasing shear rate at very low shear rate, but this trend is reversed at higher shear rates. The theoretical results are compared quantitatively with experimental data.
Keywords: aggregation, rouleau, collision rate, degradation rate, sticking probability
DOI: 10.3233/BIR-1988-251-218
Journal: Biorheology, vol. 25, no. 1-2, pp. 113-122, 1988
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]