Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Araiso, T. | Shindo, Y. | Arai, T. | Nitta, J. | Kikuchi, Y. | Kakiuchi, Y. | Koyama, T.
Affiliations: Division of Physiology, Research Institute of Applied Electricity, Hokkaido University, Sapporo, 060, Japan
Note: [] Accepted by: Editor E. Fukada
Abstract: The viscosity and the order in the interior of human erythrocyte membranes were investigated by the fluorescence depolarization technique in the nanosecond region with 1,6-diphenyl-1,3,5-hexatriene (DPH). After pulsed excitation with a polarized light, the fluorescence anisotropy ratio of DPH in membranes rapidly decreased and gave a final value (r∞). The rate of initial decrease and the value of r∞ related to the viscosity in the interior of the membranes and a wobbling angle of DPH which reflects a size of range for the phospholipid motion relating to the order of membrane structure. For normal human erythrocyte membranes the viscosity and the wobbling angle were obtained to be 0.82 poise and 42°, at 37°C. Similar values were obtained for spectrin-free membranes. Hardened membranes by the cross-linking of the cytoskeletal proteins with glutaraldehyde showed a small wobbling angle of 37°, but the viscosity of them was unchanged.
Keywords: membrane viscosity, erythrocyte, lipid bilayer, fluorescence depolarization, wobbling-in-cone model, DPH
DOI: 10.3233/BIR-1986-23504
Journal: Biorheology, vol. 23, no. 5, pp. 467-483, 1986
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]