Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Review Article
Authors: Liepsch, D.W.
Affiliations: Hal B. Wallis Research Facility, Eisenhower Medical Center, Rancho Mirage, California, 92270, U.S.A.
Note: [] Invited by Editors-in-Chief: A.L. Copley and A. Silberberg
Abstract: The cardiovascular circulatory system of the human body can be compared with a network of tubes. It consists of a pump and a system of branched vessels. The arteries transport the blood to the periphery in a manner similar to that of a water supply network. It is important to know what kind of forces act upon “fittings”, bends and bifurcations. It is also essential to assess whether the flow is laminar or turbulent, attached or separated. The flow should be optimized in such a manner as to minimize the drop in pressure. This means that no additional pressure loss due to separation or turbulence should occur, since such losses increase the pump power requirements. The loss appears in heating and acoustic energy. The necessary understanding of blood flow in human vessels is also of great interest to physicians since it is believed that the local flow behavior of blood determines the formation of atherosclerotic plaques. As in tubing systems, deposits in blood vessels are found close to bends and bifurcations. These deposits lead to impaired cerebral circulation and to myocardial infarction. A partial review of recent research into the details of flow behavior (like separation, stagnation and reattachment points) in bends and bifurcations of arterial models is presented. Studies involving steady and pulsatile flow conditions in rigid and elastic models with Newtonian and non-Newtonian fluids are shown here. The most important differences between blood vessels and tubes are discussed. This modern biofluidmechanical approach of detailed flow examination is compared with the more classical hemodynamic approach considering only gross features such as pressure loss coefficients.
Keywords: Biofluidmechanics, laser-Doppler-anemometer, birefringent solution, bifurcation, 90°-T-junction, Newtonian- non-Newtonian fluid, rigid and elastic models, steady and pulsatile flow, arterial blood flow
DOI: 10.3233/BIR-1986-23408
Journal: Biorheology, vol. 23, no. 4, pp. 395-433, 1986
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]