Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rogausch, H.
Affiliations: Institute of Physiology, University of Marburg, Deutschhausstr. 2, D-3550 Marburg, FRG
Note: [1] Supported by a grant from Deutsche Forschungsgemeinschaft (Ro 467/2).
Note: [] Accepted by Editor J.C. Healy
Abstract: Lysolecithin is formed by enzymatic processes in the blood plasma both in vivo and in vitro. Erythrocyte suspensions which are treated with lysolecithin, have a higher viscosity than normal erythrocytes. At high shear rates this may be attributed to a reduced deformability of these cells. At shear rates below 10 s−1, however, these erythrocytes maintain their resting shape (which is that of a spiculated sphere) and their viscosity is 8 times higher than that of aldehyde-hardened erythrocytes. It is therefore concluded that the reduced deformability of lysolecithin-treated erythrocytes is not the cause of their high viscosity at low flow velocities. The results of this paper suggest that lysolecithin-treated red cells have an increased functional volume due to the immobilization of fluid between their spicules. Furthermore the lysolecithin-treated erythrocytes, despite their sphered shape can attach to each other when the suspending medium contains long-chain molecules. Both the increased functional volume and the attachment of the cells can explain the high viscosity values at the lower shear rates.
Keywords: Erythrocytes, lysolecithin, viscosity
DOI: 10.3233/BIR-1984-21603
Journal: Biorheology, vol. 21, no. 6, pp. 757-765, 1984
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]