Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Issue for the Fifth International Congress of Biorheology. Part II. Baden-Baden, F.R. Germany, 20–24 August 1983
Guest editors: Alfred L. Copley and Siegfried Witte
Article type: Research Article
Authors: Skalak, Richard
Affiliations: Department of Civil Engineering and Engineering Mechanics and Bioengineering Institute, Columbia University, New York, N.Y. 10027, U.S.A.
Abstract: The aggregation of red blood cells may be analyzed as an interaction of an adhesive surface energy and the elastic stored energy which results from deformation of the cell. The adhesive surface energy is the work required to separate a unit adhered area and is the resultant of adhesive forces due to the bridging molecules that bind the cells together and the electrostatic repulsion due to surface charge. The elastic strain energy in the case of the red blood is associated with the membrane elasticity only since the interior of the cell is liquid. The membrane elasticity is due both to bending stiffness and shear. The area expansion is small and may be neglected. These assumptions allow realistic computation of red cell shapes in rouleaux. The disaggregation of rouleaux requires an external force which must overcome the adhesive energy and also supply additional elastic energy of deformation. Depending on the geometry, the initial effect of elastic energy may tend to aid disaggregation. In a shear flow, the stresses on a suspended rouleau alternately tend to compress and to disaggregate the cells if they are free to rotate. This introduces a time dependence so that viscous effects due to the viscosity of the cell membrane, the cell cytoplasm and the external fluid may play a role in determining whether disaggregation proceeds to completion or not.
Keywords: Aggregation, Disaggregation, Rouleau, Erythrocyte adhesion
DOI: 10.3233/BIR-1984-21406
Journal: Biorheology, vol. 21, no. 4, pp. 463-476, 1984
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]