Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Langille, B. Lowell
Affiliations: Department of Physiology, University of Western Ontario, London, Ontario N6A 5C1, Canada
Note: [] Accepted by Editor H.L. Goldsmith
Abstract: Shear-induced injury or denudation of arterial endothelium has been implicated in atherogenesis. This study reports on an in vitro technique for imposing high, controlled shear stresses on endothelium. Samples of dog aorta were mounted in a chamber so that the endothelium was 1 mm ± 0.03 mm from a rotating disc. The chamber was filled with a high viscosity solution (10% polyvinyl pyrrolidone in Tyrode’s solution, viscosity = 1.97 ± .07 Poise) which was sheared over the endothelium by the disc. A servo amplifier drove the motor that rotated the disc, so that motor RPM (therefore shear stress) could be made to follow either steady or pulsatile signals played into the amplifier. Acute (10 min – 1 hr) exposure to steady shear stresses of up to 2000 dyne/cm2 did not cause gross endothelial injury or denudation. Exposure of endothelium to pulsatile shear stresses that followed a tape recording of physiological flow waveforms (electromagnetic flowmeter) did not cause gross injury or denudation even when peak shear exceeded 1500 dyne/cm2. Furthermore exposure to high shear stress did not degrade the non-thrombogenic nature of the endothelium because subsequent platelet adhesion was poorly and negatively correlated with shear stress.
Keywords: atherogenesis, response to injury hypothesis, hemodynamics
DOI: 10.3233/BIR-1984-21304
Journal: Biorheology, vol. 21, no. 3, pp. 333-346, 1984
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]