Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Corbet, Aaron B.*
Note: [*] Visiting Scholar, Department of Chemical Engineering, Stanford University, Stanford, California 94305
Note: [] Accepted by: Editor Y.C.B. Fung
Abstract: The present paper explores the implications of employing time-averaged true continuum fields to investigate blood rheology in “steady viscometric” flows. This approach is in contrast with the spatially-averaged interpretation of field variables which is generally employed. On the basis of four plausible constitutive assumptions it is then possible to deduce the qualitative in vivo behavior of all three of the material functions of whole mammalian blood from inspection of the corresponding velocity profile. Quantitative results, and the evaluation of the material constants for specific constitutive models, can be obtained through curve-fitting procedures, as is illustrated. The development reconfirms, and puts on a formal basis, the earlier conclusion of Bugliarello, et al, that whole blood can have a dilatant response at low rates of shear. In addition, the normal stress forces are shown to have off-axis extrema in tube flow, and to be large enough to influence particle migration across streamlines. The existing data on particle migration in whole blood is reviewed, and shown to be in accord with these results.
Keywords: blood rheology, velocity profiles, normal stresses, immune response
DOI: 10.3233/BIR-1983-20105
Journal: Biorheology, vol. 20, no. 1, pp. 57-70, 1983
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]