Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Viidik, A. | Danielsen, C.C. | Oxlund, H.
Affiliations: Department of Connective Tissue Biology, Institute of Anatomy, University of Aarhus, University Park, DK-8000 Aarhus C, Denmark
Note: [] Accepted by: Guest Editors S. Woo and K. Hayashi
Abstract: This paper reviews the structure (fran molecular to macroscopic level) of collagen, elastin and glycosaminoglycans, with special reference to their functional properties and to how their behavior can be elucidated from in vitro manipulations of the tissues by biochemical means. Modes to analyse the mechanical behavior are briefly discussed and examplified by data from reconstituted collagenous “tissue”. It is concluded that the basic equation for the “non-linear elasticity” component in Fung’s law (and for the reconstituted “tissue” a modification of it) is a powerful tool for analysis of the physiological range of the stress-strain curve. Further, enzymatic “dissection” of one tissue element at a time provides a valuable method for the analysis of tissue element interactions. This approach is illustrated with data fran aortic tissue. It is shown that the mechanical properties of the aorta depend on an interaction between elastic and collagenous elements and that the strength of the tissue is not derived from its collagen fibers per se.
Keywords: collagen, elastin, glycosaminoglycans, biomechanics, morphology, biochemical structure
DOI: 10.3233/BIR-1982-19305
Journal: Biorheology, vol. 19, no. 3, pp. 437-451, 1982
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]