Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Papenfuss, Heinz D. | Gross, Joseph F.
Affiliations: Department of Chemical Engineering, University of Arizona Tucson, Arizona, U.S.A.
Abstract: This work is a theoretical study of the viscosity changes due to transmural fluid exchange in permeable blood vessels and their influence on the filtration rate. Two effects are considered: (i) Variation of the tube hematocrit along the vessel axis which leads to a concomitant variation of the suspension viscosity. (ii) Variation of the total plasma protein concentration along the capillary axis which changes the plasma viscosity. For the first effect, experimental data of Barbee and Cokelet for tube diameters of 29–221 μm are used for the theoretical model. For capillaries of smaller diameters, the “stacked-coins model” is used to simulate the single-file flow of the red cells. A fictitious reservoir approach is proposed to determine the Fåhraeus and Fåhraeus–Lindqvist effects for permeable blood vessels. Results for the rat glomerulus show that the blood viscosity increases along the capillaries due to filtration by as much as 60%. However, this fluid mechanical change affects the filtration fraction be less than 2%, compared with results for earlier models which use the assumption of constant blood viscosity.
DOI: 10.3233/BIR-1977-145-602
Journal: Biorheology, vol. 14, no. 5-6, pp. 217-228, 1977
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]