Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Pennati, Giancarlo
Affiliations: Department of Bioengineering and Laboratory of Biological Structure Mechanics, Politecnico di Milano, Milan, Italy
Note: [] Address for correspondence: Giancarlo Pennati, Ph.D., Department of Bioengineering and Laboratory of Biological Structure Mechanics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy. Tel.: +39 02 2399.4283; Fax: +39 02 2399.4286; E‐mail: [email protected].
Abstract: The umbilical cord is a complex and fascinating structure that connects the fetus to the placenta and encases the umbilical vessels. The response of its tissues to mechanical loading due to fetal movements and uterine contractions is not well understood. The aim of this study is the evaluation of the mechanical properties of the main components of the human umbilical cord. Fresh umbilical cord specimens were collected from neonates born at term of the gestation and submitted to compliance tests. Furthermore, uniaxial tensile and stress‐relaxation tests were performed on samples of umbilical vein and Wharton's jelly. Both materials exhibited nonlinear stress–strain response with increasing strain, increasing the elastic modulus (Ehigh about 10–20 times Elow) and significant viscoelastic behavior. In addition, anisotropy of the vein was observed. Although the circumferential properties of the vein (mean Ehigh about 2.4 MPa) were similar to those after birth, the longitudinal stiffness of both materials was higher (mean Ehigh over 10 MPa) and comparable to that of the ligaments. These findings suggest a mechanism of protection acting against excessive elongations of the cord, which could cause undue restriction of the umbilical vessel area and interference with the fetal blood circulation.
Journal: Biorheology, vol. 38, no. 5-6, pp. 355-366, 2001
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]