Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Neu, Björn; | Armstrong, Jonathan K. | Fisher, Timothy C. | Bäumler, Hans | Meiselman, Herbert J.
Affiliations: Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA | Institute of Transfusion Medicine, Medical Faculty Charité, Humboldt University of Berlin, D‐10098 Berlin, Germany
Note: [] Address for correspondence: Dr. Björn Neu, Department of Physiology and Biophysics, Keck School of Medicine, 1333 San Pablo Street, MMR 626, Los Angeles, CA 90033, USA. Tel.: +1 323 442 1267; Fax: +1 323 442 2283; E‐mail: [email protected].
Abstract: Poly(ethylene glycol), abbreviated as PEG, was covalently attached to the surface of human red blood cells (RBC) and the effects of such coating on the regions near the cell's glycocalyx were explored by means of cell electrophoresis. RBC electrophoretic mobilities were measured, in polymer‐free buffers of various ionic strengths, as functions of PEG molecular mass (3.35, 18.5, 35.0, 35.9 kDa), geometry, (linear or 8‐arm branched) and polymer/RBC ratio during attachment. The results indicate marked decreases of the mobility (up to 85%) which were affected by polymer molecular mass and geometry. Since PEG is neutral and its covalent attachment only removes positively‐charged amino groups on the cell membrane, such decreases of mobility likely reflect structural changes near and within the RBC glycocalyx. Experimental results were analyzed using an extended “hairy sphere” model to consider friction and thickness of the polymer layer. Calculated polymer layer thickness increased with molecular mass for linear PEGs and was less extended for a branched PEG of similar molecular mass. Friction within the polymer layer increased with polymer/RBC ratio and for the linear PEGs was inversely related to molecular mass; friction was greatest for the branched PEG. Our results are consistent with the effects of attached PEGs on RBC aggregation and surface antigenic site masking, and suggest the usefulness of electrophoretic mobility techniques for studies of bound neutral polymers.
Journal: Biorheology, vol. 38, no. 5-6, pp. 389-403, 2001
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]