Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Pribush, A.; ; | Meiselman, H.J. | Meyerstein, D.; | Meyerstein, N.
Affiliations: The Dr. Joseph Kaufmann Hematology Laboratory, Physiology Department, Faculty of Health Sciences, Israel | Chemistry Department, Faculty of Natural Sciences, Ben‐Gurion University of the Negev, Beer‐Sheva, Israel | Department of Physiology and Biophysics, School of Medicine, University of Southern California, USA | The College of Judea and Samaria, Ariel, Israel
Note: [] Address for correspondence: Dr. Alexander Pribush, Physiology Department, Faculty of Health Sciences, Ben‐Gurion University of the Negev, Beer‐Sheva, 84105, Israel. Fax: +972 7 6477628; E‐mail: [email protected].
Abstract: A method based on dielectric properties of dispersed systems was applied to investigate the kinetics of RBC aggregation and the break‐up of the aggregates. Experimentally, this method consists of measuring the capacitance at a frequency in the beginning of the β‐dispersion. Two experimental protocols were used to investigate the aggregation process. In the first case, blood samples were fully dispersed and then the flow was decreased or stopped to promote RBC aggregation. It was found that the initial phases of RBC aggregation are not affected by the shear rate. This finding indicates that RBC aggregation is a slow coagulation process. In the second case, RBCs aggregated under flow conditions at different shear rates and after the capacitance reached plateau levels, the flow was ceased. The steady‐state capacitance of the quiescent blood and the kinetics of RBC aggregation after stoppage of shearing depend on the prior shear rate. To clarify the reasons for this effect, the kinetics of the disaggregation process was studied. In these experiments, time courses of the capacitance were recorded under different flow conditions and then a higher shear stress was applied to break up RBC aggregates. It was found that the kinetics of the disaggregation process depend on both the prior and current shear stresses. Results obtained in this study and their analysis show that the kinetics of RBC aggregation in stasis consists of two consecutive phases: At the onset, red blood cells interact face‐to‐face to form linear aggregates and then, after an accumulation of an appropriate concentration of these aggregates, branched rouleaux are formed via reactions of ends of the linear rouleaux with sides of other rouleaux (face‐to‐side interactions). Branching points are broken by low shear stresses whereas dispersion of the linear rouleaux requires significantly higher energy.
Keywords: Erythrocyte, kinetics of aggregation–disaggregation, linear and branched rouleaux
Journal: Biorheology, vol. 37, no. 5-6, pp. 429-441, 2000
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]