Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: The Third Conference of the International CoQ10 Association
Article type: Research Article
Authors: Sun, I.L. | Sun, L.E. | Sun, E.E. | Crane, F.L. | Willis, R.
Affiliations: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA | Department of Human Ecology, University of Texas, Austin, TX 78712, USA
Note: [] Address for correspondence: Richard Willis, Department of Human Ecology, University of Texas, Austin, TX 78712, USA. E-mail: [email protected]
Abstract: This study was organized by Professor Karl Folkers with the objective of finding derivatives of coenzyme Q which could be more effectively absorbed and would give better biomedical effects. In this series all the compounds are 2,3 dimethoxy, 5 methyl p benzoquinone with modified side chains in the 6 position. The modifications are primarily changes in chain length, unsaturation, methyl groups and addition of terminal phenyl groups. The test system evaluates the growth of serum deficient HL60, 3T3 and HeLa cells in the presence of coenzyme Q_{10} or coenzyme Q analogs. Short chain coenzyme Q homologues such as coenzyme Q_2 give poor growth but compounds with saturated short aliphatic side chains from C10 to C18 produce good growth. Introduction of a single double bond at the 2' or 8' position in the aliphatic chain retains growth stimulation at low concentration but introduces inhibition at higher concentration. Introduction of a 3' methyl group in addition to the 2' enyl site in the side chain decreases the growth response and maintains inhibition. Addition of a terminal phenyl group to the side chain from C5 to C10 can produce analogs which give strong stimulation or strong inhibition of growth. The action of the analogs is in addition to the natural coenzyme Q in the cell and is not based on restoration of activity after depletion of normal coenzyme Q. The effects may be based on any of the sites in the cell where coenzyme Q functions. For example, coenzyme Q_2 is known to decrease mitochondrial membrane potential whereas the analog with a 10C aliphatic side chain increases potential. Both of these compounds stimulate plasma membrane electron transport. Inhibition of apoptosis by coenzyme Q may also increase net cell proliferation and the 10C analog inhibits the permeability transition pore.
Keywords: coenzyme Q analogs, cell growth
Journal: BioFactors, vol. 18, no. 1-4, pp. 307-314, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]