Purchase individual online access for 1 year to this journal.
Price: EUR 150.00
ISSN 0928-7329 (P)
ISSN
1878-7401 (E)
Impact Factor 2024: 1.4
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured.
The following types of contributions and areas are considered:
1. Original articles:
Technology development in medicine: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine.
Significance of medical technology and informatics for healthcare: The appropriateness, efficacy and usefulness deriving from the application of engineering methods, devices and informatics in medicine and with respect to public health are discussed.
2. Technical notes:
Short communications on novel technical developments with relevance for clinical medicine.
3. Reviews and tutorials (upon invitation only):
Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented.
4. Minisymposia (upon invitation only):
Under the leadership of a Special Editor, controversial issues relating to healthcare are highlighted and discussed by various authors.
Abstract: BACKGROUND: Numerous researchers have attempted to improve the mechanical properties of glass ionomer cement since 1972. In this study, ultrasonic curing treatment was introduced during the mixing of glass ionomer cement (GC Fuji IX) to facilitate intimate mixing, compaction and adaptation of residual glass particle which consequently improves densification of the material. OBJECTIVE: To assess the influence of ultrasonic treatment on the microhardness of glass ionomer cement (GC Fuji IX) and compare it with the conventionally cured method. METHODS: A total of 40 specimens (2 × 2 mm) were fabricated…and equally divided into two groups: Group I (conventional curing method) and Group II (ultrasonically cured). For Group II, an ultrasonic scaler was used which provides energy to ensure proper mixing of material without leaving any air bubbles or unmixed particles. Vicker’s hardness test was employed to generate the average microhardness values by making three indentations at different points on each specimen. Statistical Package for Social Sciences (SPSS) Version 17 was used, employing independent samples T test to compare the difference in microhardness values between two curing groups. RESULTS: The average surface hardness value for conventional cured GIC was 62.21 ± 13.61 while ultrasonically cured GIC exhibited a higher mean microhardness value of 66.37 ± 12.83. Additionally, the average microhardness values produced by the two groups showed statistically significant differences (p value < 0.035). CONCLUSION: Ultrasonic excitation treatment leads to intimate mixing and accelerated hardening of glass ionomer cement thereby enhancing its microhardness and reducing early weakness.
Show more
Abstract: BACKGROUND: Dynamic hip screw (DHS) is a common implant used to treat stable-type intertrochanteric hip fractures. There are many factors that can affect the success rate of the surgery, including the length of side plates. It is therefore important to investigate the biomechanical effect of different DHS side plates on bones. OBJECTIVE: In order to reduce the likelihood of an implant failure, the aim of this study was to use finite element analysis (FEA) to investigate and understand the effect of side plates with different lengths in DHS. METHODS: In this FEA study,…a 3D model with cortical bone, cancellous bone, side plate, lag screw, and cortical screws to simulate the implantation of DHS with different lengths of side plate (2-hole, 4-hole, and 6-hole) for intertrochanteric hip fractures was constructed. The loading condition was used to simulate the force (400 N) on the femoral head and the stress distribution on the lag screw, side plate, cortical screws, and femur was measured. RESULTS: The highest stress points occured around the region of contact between the screw and the cortical bones. The stress on the femur at the most distal cortical screw was the greatest. The shorter the length of the side plate, the greater the stress on the cortical screws, resulting in an increased stress on the femur surrounding the cortical screws. CONCLUSIONS: The use of DHS with 2-hole side plate may increase the risk of side plate pull-out. The results of this study provide a biomechanical analysis for selection of DHS implant lengths that can be useful for orthopaedic surgeons.
Show more
Keywords: Biomechanics, finite element analysis, dynamic hip screw, intertrochanteric hip fracture
Abstract: BACKGROUND: Zirconia has become a popular biomaterial in dental implant systems because of its biocompatible and aesthetic properties. However, this material is more fragile than titanium so its use is limited. OBJECTIVES: The aim of this study was to compare the stresses on morse taper implant systems under parafunctional loading in different abutment materials using three-dimensional finite element analysis (3D FEA). METHODS: Four different variations were modelled. The models were created according to abutment materials (zirconia or titanium) and loading (1000 MPa vertical or oblique on abutments). The placement of the implants (diameter, 5.0…× 15 mm) were mandibular right first molar. RESULTS: In zirconia abutment models, von Mises stress (VMS) values of implants and abutments were decreased. Maximum and minimum principal stresses and VMS values increased in oblique loading. VMS values were highest in the connection level of the conical abutments in all models. CONCLUSIONS: Using conical zirconia abutments decreases von Mises stress values in abutments and implants. However, these values may exceed the pathological limits in bruxism patients. Therefore, microfractures may be related to the level of the abutment.
Show more
Keywords: Abutment, bruxism, finite element analysis, titanium material, mandible, zirconia material
Abstract: BACKGROUND: Leg length discrepancy (LLD) can cause abnormal posture, muscle and/or joint pains, which leads to walking difficulties. The common treatment is to use a shoe lift on the shorter leg side, but this has unsatisfying results. OBJECTIVE: Through research and development, we created 3D printing orthotic insoles for LLD patients and aimed to improve their symptoms. METHODS: 1. Research and development of 3D printing orthotic insole: (1) foot scan and data acquisition; (2) insole software modeling; (3) 3D printing insole using TPU materials, and (4) post-processing. 2. Clinical observation: we customized insoles…for LLD patients and required them to wear them while walking. We conducted general inquiries and a functional evaluation before and after 12 weeks of wearing insoles. RESULTS: There are seven complete cases. The joint and lower back pains were alleviated. The stride frequency, stride and pace were improved in all seven cases. Patients’ overall health condition improved significantly. CONCLUSIONS: The 3D printing orthotic insoles are made with clear procedures and practical operability. By wearing insoles, patients’ muscle and/or joint pains were relieved and their gaits were improved.
Show more
Keywords: Leg length discrepancy (LLD), pain, gait deviations, 3D printing, orthotic insole
Abstract: BACKGROUND: Fresnel prism shifts the field of view and converts object position in space, but its effect on stroke patients without unilateral neglect has not been examined. OBJECTIVE: We aimed to investigate the effect of Fresnel prism glasses on balance and gait in stroke patients with hemiplegia. METHODS: This study included 17 stroke patients with hemiplegia without unilateral neglect. Balance and gait training were applied in the control group (n = 9), and Fresnel prism glasses were applied with balance and gait training in the experimental group (n…= 8). In all groups, interventions were done for 30 min/day for 5 times/week for 4 weeks. Motor-free visual perception test for visual perception (MVPT), Berg Balance Scale (BBS), and functional reach test (FRT) for dynamic balance ability, and gait were performed. Measurements were done before and after interventions. RESULTS: MVPT showed no significant difference between the groups (p > 0.05). A significant increase in BBS and FRT results was found before and after interventions in the experimental group (p < 0.05). Gait variables showed significant difference in the experimental group (p < 0.05). CONCLUSION: Fresnel prism glasses may effectively improve dynamic balance and gait functions by shifting body weight to the affected side of stroke patients with hemiplegia without vision loss.
Show more
Abstract: BACKGROUND: Clinicians routinely provide provisional crowns following teeth preparation. Three-dimensional (3D) printing technology could be used over conventional methods for better fit as lack of adequate fit would result in plaque accumulation, micro-leakage, teeth sensitivity, caries and periodontal diseases. OBJECTIVE: The aim of the study was to evaluate the marginal and internal fit of provisional crowns fabricated using 3D printing technology and to compare it with that of compression molding and milling methods. METHODS: Ninety study models were fabricated by duplicating metal master models of the maxillary first premolar molar with three different…finish line chamfer, rounded shoulder and rounded shoulder with bevel. On each study model, provisional crowns were fabricated using compression molding (Mo. group, n = 30 – by over impression technique), milling (Mi. group, n = 30 – by 5-axis dental milling machine), and 3D printing method (3D-P. group, n = 30 – by 3D printer). Marginal and internal fit of the samples were evaluated by measuring gap using a scanning electron microscope with a magnification of 27 × , at 7 zones A–G on different finish line models. The data were statistically analysed using one-way analysis of variance (ANOVA) at the 0.05 significance level. The p -values were calculated using Dunnett’s test. RESULTS: The marginal gap was minimal for the 3D-P. group for each finish line with lowest for rounded shoulder with bevel at zone A 30.6 ± 5.3 and at zone G 32.8 ± 5.4. In axial area, i.e. zones B and F, the minimum gap was noticed for the Mo. group and in Occlusal area (cusp and fossa), for zones C–E maximum gap was determined in Mi. group followed by Mo. and 3D-P. groups. CONCLUSIONS: 3D printed provisional crowns have better marginal and internal fit compared to milled and molded provisional crowns.
Show more
Keywords: Temporary crown, additive manufacturing, internal discrepancy, 3D printing, CAD-CAM
Abstract: BACKGROUD: Hydrocephalus is the most common anomaly of the fetal head characterized by an excessive accumulation of fluid in the brain processing. The diagnostic process of fetal heads using traditional evaluation techniques are generally time consuming and error prone. Usually, fetal head size is computed using an ultrasound (US) image around 20–22 weeks, which is the gestational age (GA). Biometrical measurements are extracted and compared with ground truth charts to identify normal or abnormal growth. METHODS: In this paper, an attempt has been made to enhance the Hydrocephalus characterization process by extracting other geometrical and textural…features to design an efficient recognition system. The superiority of this work consists of the reduced time processing and the complexity of standard automatic approaches for routine examination. This proposed method requires practical insidiousness of the precocious discovery of fetuses’ malformation to alert the experts about the existence of abnormal outcome. The first task is devoted to a proposed pre-processing model using a standard filtering and a segmentation scheme using a modified Hough transform (MHT) to detect the region of interest. Indeed, the obtained clinical parameters are presented to the principal component analysis (PCA) model in order to obtain a reduced number of measures which are employed in the classification stage. RESULTS: Thanks to the combination of geometrical and statistical features, the classification process provided an important ability and an interesting performance achieving more than 96% of accuracy to detect pathological subjects in premature ages. CONCLUSIONS: The experimental results illustrate the success and the accuracy of the proposed classification method for a factual diagnostic of fetal head malformation.
Show more
Keywords: Hydrocephalus, fetal US imaging, fetal head biometry, modified Hough transform (MHT), feature extraction
Abstract: BACKGROUND: The human voice is the main feature of human communication. It is known that the brain controls the human voice. Therefore, there should be a relation between the characteristics of voice and brain activity. OBJECTIVE: In this research, electroencephalography (EEG) as the feature of brain activity and voice signals were simultaneously analyzed. METHOD: For this purpose, we changed the activity of the human brain by applying different odours and simultaneously recorded their voices and EEG signals while they read a text. For the analysis, we used the fractal theory that deals with…the complexity of objects. The fractal dimension of EEG signal versus voice signal in different levels of brain activity were computed and analyzed. RESULTS: The results indicate that the activity of human voice is related to brain activity, where the variations of the complexity of EEG signal are linked to the variations of the complexity of voice signal. In addition, the EEG and voice signal complexities are related to the molecular complexity of applied odours. CONCLUSION: The employed method of analysis in this research can be widely applied to other physiological signals in order to relate the activities of different organs of human such as the heart to the activity of his brain.
Show more
Abstract: BACKGROUND: Walking is one of the important actions of the human body. For this purpose, the human brain communicates with leg muscles through the nervous system. Based on the walking path, leg muscles act differently. Therefore, there should be a relation between the activity of leg muscles and the path of movement. OBJECTIVE: In order to address this issue, we analyzed how leg muscle activity is related to the variations of the path of movement. METHOD: Since the electromyography (EMG) signal is a feature of muscle activity and the movement path has complex…structures, we used entropy analysis in order to link their structures. The Shannon entropy of EMG signal and walking path are computed to relate their information content. RESULTS: Based on the obtained results, walking on a path with greater information content causes greater information content in the EMG signal which is supported by statistical analysis results. This allowed us to analyze the relation between muscle activity and walking path. CONCLUSION: The method of analysis employed in this research can be applied to investigate the relation between brain or heart reactions and walking path.
Show more
Keywords: Leg muscle, walking path, electromyography (EMG) signal, Shannon entropy, information
Abstract: BACKGROUND: Biological hydrogels provide a conducive three-dimensional extracellular matrix environment for encapsulating and cultivating living cells. Microenvironmental modulus of hydrogels dictates several characteristics of cell functions such as proliferation, adhesion, self-renewal, differentiation, migration, cell morphology and fate. Precise measurement of the mechanical properties of gels is necessary for investigating cellular mechanobiology in a variety of applications in tissue engineering. Elastic properties of gels are strongly influenced by the amount of crosslinking density. OBJECTIVE: The main purpose of the present study was to determine the elastic modulus of two types of well-known biological hydrogels: Agarose and Gelatin…Methacryloyl. METHODS: Mechanical properties such as Young’s modulus, fracture stress and failure strain of the prescribed gels with a wide range of concentrations were determined using tension and compression tests. RESULTS: The elastic modulus, failure stress and strain were found to be strongly influenced when the amount of concentration in the hydrogels was changed. The elastic modulus for a lower level of concentration, not considered in this study, was also predicted using statistical analysis. CONCLUSIONS: Closed matching of the mechanical properties of the gels revealed that the bulk tension and compression tests could be confidently used for assessing mechanical properties of delicate biological hydrogels.
Show more