Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: You, Miaona | Zhuang, Sumei | Luo, Ruxue
Article Type: Research Article
Abstract: This study proposes a weighted composite approach for grey relational analysis (GRA) that utilizes a numerical weather prediction (NWP) and support vector machine (SVM). The approach is optimized using an improved grey wolf optimization (IGWO) algorithm. Initially, the dimension of NWP data is decreased by t-distributed stochastic neighbor embedding (t-SNE), then the weight of sample coefficients is calculated by entropy-weight method (EWM), and the weighted grey relational of data points is calculated for different weather numerical time series data. At the same time, a new weighted composite grey relational degree is formed by combining the weighted cosine similarity of NWP …values of the historical day and to be measured day. The SVM’s regression power prediction model is constructed by the time series data. To improve the accuracy of the system’s predictions, the grey relational time series data is chosen as the input variable for the SVM, and the influence parameters of the ideal SVM are discovered using the IGWO technique. According to the simulated prediction and analysis based on NWP, it can be observed that the proposed method in this study significantly improves the prediction accuracy of the data. Specifically, evaluation metrics such as root mean squared error (RMSE), regression correlation coefficient (r 2 ), mean absolute error (MAE) and mean absolute percent error (MAPE) all show corresponding enhancements, while the computational burden remains relatively low. Show more
Keywords: t-SNE, power forecasting, IGWO, NWP
DOI: 10.3233/JIFS-237333
Citation: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 10847-10862, 2024
Authors: Sundara Kumar, M.R. | Mohan, H.S.
Article Type: Research Article
Abstract: Big Data Analytics (BDA) is an unavoidable technique in today’s digital world for dealing with massive amounts of digital data generated by online and internet sources. It is kept in repositories for data processing via cluster nodes that are distributed throughout the wider network. Because of its magnitude and real-time creation, big data processing faces challenges with latency and throughput. Modern systems such as Hadoop and SPARK manage large amounts of data with their HDFS, Map Reduce, and In-Memory analytics approaches, but the migration cost is higher than usual. With Genetic Algorithm-based Optimization (GABO), Map Reduce Scheduling (MRS) and Data …Replication have provided answers to this challenge. With multi objective solutions provided by Genetic Algorithm, resource utilization and node availability improve processing performance in large data environments. This work develops a novel creative strategy for enhancing data processing performance in big data analytics called Map Reduce Scheduling Based Non-Dominated Sorting Genetic Algorithm (MRSNSGA). The Hadoop-Map Reduce paradigm handles the placement of data in distributed blocks as a chunk and their scheduling among the cluster nodes in a wider network. Best fit solutions with high latency and low accessing time are extracted from the findings of various objective solutions. Experiments were carried out as a simulation with several inputs of varied location node data and cluster racks. Finally, the results show that the speed of data processing in big data analytics was enhanced by 30–35% over previous methodologies. Optimization approaches developed to locate the best solutions from multi-objective solutions at a rate of 24–30% among cluster nodes. Show more
Keywords: Big data analytics, hadoop distributed file system, non-dominated sorting genetic algorithm, map reduce scheduling based non-dominated sorting genetic algorithm, map reduce scheduling, genetic algorithm-based optimization
DOI: 10.3233/JIFS-240069
Citation: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 10863-10882, 2024
Authors: Chiadamrong, Navee | Suthamanondh, Pisacha
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-233036
Citation: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 10883-10906, 2024
Authors: Parisae, Veeraswamy | Nagakishore Bhavanam, S.
Article Type: Research Article
Abstract: The goal of speech enhancement is to restore clean speech in noisy environments. Acoustic scenarios with low signal-to-noise ratios (SNR) make it quite challenging to extract the target speech from its noise. In the current study, to enhance noisy speech, we propose a feature recalibration based multi-scale convolutional encoder-decoder architecture with squeeze temporal convolutional networks (S-TCN) bottleneck. Each multi-scale convolutional layer in encoder and decoder is followed by time-frequency attention module (TFA). The recalibration based multi-scale 2D convolution layers are used to extract local and contextual information. Additionally, the recalibration network is equipped with a gating mechanism to control the …flow of information among the layers, enabling weighting of the scaled features for noise suppression and speech retention. The fully connected layer (FC) in the bottleneck part of encoder-decoder contains a few neurons, which capture the global information from the multi-scale 2D convolution layer and reduce parameters. A S-TCN, inspired by the popular temporal convolutional neural network (TCNN), is inserted between the encoder and the decoder to model long-term dependencies in speech. The TFA is a highly efficient network component, that operates through two simultaneous attentions, one focused on time frames, and the other on frequency channels. These attentions work together to explicitly exploit positional information to create a two-dimensional attention map to effectively capture the significant time-frequency distribution of speech. Utilizing the common voice dataset, our proposed model consistently enhances results compared to the current benchmarks, as demonstrated by two extensively utilized objective measures PESQ and STOI. The proposed model shows significant improvements, with average PESQ and STOI scores increasing by 45.7% and 23.8% respectively for seen background noises, and by 43.5% and 21.4% for unseen background noises, when compared to the quality of noisy speech. Tests validate that the proposed approach outperforms numerous cutting-edge algorithms. Show more
Keywords: TFA - time-frequency attention, S-TCN - squeeze temporal convolutional networks, MSCL - multi scale convolutional layer, FR - feature recalibration, FRMSC - feature recalibration based multi scale convolution
DOI: 10.3233/JIFS-233312
Citation: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 10907-10907, 2024
Authors: Wang, Zhiwen | Zhao, Yibin | Shi, Yaoke | Ling, Guobi
Article Type: Research Article
Abstract: Due to the complexity of the factors influencing membrane fouling in membrane bioreactors (MBR), it is difficult to accurately predict membrane fouling. This paper proposes a multi-strategy of integration aquila optimizer deep belief network (MAO-DBN) based membrane fouling prediction method. The method is developed to improve the accuracy and efficiency of membrane fouling prediction. Firstly, partial least squares (PLS) are used to reduce the dimensionality of many membrane fouling factors to improve the algorithm’s generalization ability. Secondly, considering the drawbacks of deep belief network (DBN) such as long training time and easy overfitting, piecewise mapping is introduced in aquila optimizer …(AO) to improve the uniformity of population distribution, while adaptive weighting is used to improve the convergence speed and prevent falling into local optimum. Finally, the prediction of membrane fouling is carried out by utilizing membrane fouling data as the research object. The experimental results show that the method proposed in this paper can achieve accurate prediction of membrane fluxes, with an 88.45% reduction in RMSE and 87.53% reduction in MAE compared with the DBN model before improvement. The experimental results show that the model proposed in this paper achieves a prediction accuracy of 98.61%, both higher than other comparative models, which can provide a theoretical basis for membrane fouling prediction in the practical operation of membrane water treatment. Show more
Keywords: Membrane bioreactors (MBR), membrane fouling prediction, deep belief network (DBN), aquila optimizer (AO)
DOI: 10.3233/JIFS-233655
Citation: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 10923-10939, 2024
Authors: Wu, Guangli | Yang, Zhijun | Zhang, Jing
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-234800
Citation: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 10941-10953, 2024
Authors: Sujeeth, T. | Ramesh, C. | Palwe, Sushila | Ramu, Gandikota | Basha, Shaik Johny | Upadhyay, Deepak | Chanthirasekaran, K. | Sivasankari, K. | Rajaram, A.
Article Type: Research Article
Abstract: Solar power generation forecasting plays a vital role in optimizing grid management and stability, particularly in renewable energy-integrated power systems. This research paper presents a comprehensive study on solar power generation forecasting, evaluating traditional and advanced machine learning methods, including ARIMA, Exponential Smoothing, Support Vector Regression, Random Forest, Gradient Boosting, and Physics-based Models. Moreover, we propose an innovative Enhanced Artificial Neural Network (ANN) model, which incorporates Weather Modulation and Leveraging Prior Forecasts to enhance prediction accuracy. The proposed model is evaluated using real-world solar power generation data, and the results demonstrate its superior performance compared to traditional methods and other …machine learning approaches. The Enhanced ANN model achieves an impressive Root Mean Square Error (RMSE) of 0.116 and a Mean Absolute Percentage Error (MAPE) of 36.26%. The integration of Weather Modulation allows the model to adapt to changing weather conditions, ensuring reliable forecasts even during adverse scenarios. Leveraging Prior Forecasts enables the model to capture short-term trends, reducing forecasting errors arising from abrupt weather changes. The proposed Enhanced ANN model showcases its potential as a promising tool for precise and reliable solar power generation forecasting, contributing to the efficient integration of solar energy into the power grid and advancing sustainable energy practices. Show more
Keywords: Solar power generation, forecasting, artificial neural network, machine learning, renewable energy, grid management
DOI: 10.3233/JIFS-235612
Citation: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 10955-10968, 2024
Authors: Wang, Yu
Article Type: Research Article
Abstract: Traditional psychological awareness relating to vocal musical instruction often disregards the impact of earlier experiences on music learning could result in a gap in meeting the needs of individual students. Conventional learning techniques of music related to psychological awareness for each individual has been focused on and addressed in this research. Technological upgrades in Fuzzy Logic (FL) and Big Data (BD) related to Artificial Intelligence (AI) are provided as a solution for the existing challenges and provide enhancement in personalized music education. The combined approach of BD-assisted Radial Basis Function is added with the Takagi Sugeno (RBF-TS) inference system, able …to give personalized vocal music instruction recommendations and indulge psychological awareness among students. Applying Mel-Frequency Cepstral Coefficients (MFCC) is beneficial in capturing variant vocal characteristics as a feature extraction technique. The BD-assisted RBF can identify the accuracy of pitch differences and quality of tone, understand choices from students, and stimulate psychological awareness. The uncertainties are addressed by using the TS fuzzy inference system and delivering personalized vocal training depending on different student preference factors. With the use of multimodal data, the proposed RBF-TS approach can establish a fuzzy rule base in accordance with the personalized emotional elements, enhancing self-awareness and psychological well-being. Validation of the proposed approach using an Instruction Resource Utilization Rate (IRUR) gives significant improvements in engaging students, analyzing the pitching accuracy, frequency distribution of vocal music instruction, and loss function called Mean Square Error(MSE). The proposed research algorithm pioneers a novel solution using advanced AI algorithms addressing the research challenges in existing personalized vocal music education. It promises better student outcomes in the field of music education. Show more
Keywords: Big data, Mel-Frequency Cepstral Coefficients, takagi-sugeno inference system, radial basis function, pitch accurateness, vocal music instruction
DOI: 10.3233/JIFS-236248
Citation: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 10969-10983, 2024
Authors: Wang, Youwei | Feng, Lizhou
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-236422
Citation: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 10985-11001, 2024
Authors: Ge, Pengqiang | Chen, Yiyang | Wang, Guina | Weng, Guirong | Chen, Hongtian
Article Type: Research Article
Abstract: Active contour model (ACM) is considered as one of the most frequently employed models in image segmentation due to its effectiveness and efficiency. However, the segmentation results of images with intensity non-uniformity processed by the majority of existing ACMs are possibly inaccurate or even wrong in the forms of edge leakage, long convergence time and poor robustness. In addition, they usually become unstable with the existence of different initial contours and unevenly distributed intensity. To better solve these problems and improve segmentation results, this paper puts forward an ACM approach using adaptive local pre-fitting energy (ALPF) for image segmentation with …intensity non-uniformity. Firstly, the pre-fitting functions generate fitted images inside and outside contour line ahead of iteration, which significantly reduces convergence time of level set function. Next, an adaptive regularization function is designed to normalize the energy range of data-driven term, which improves robustness and stability to different initial contours and intensity non-uniformity. Lastly, an improved length constraint term is utilized to continuously smooth and shorten zero level set, which reduces the chance of edge leakage and filters out irrelevant background noise. In contrast with newly constructed ACMs, ALPF model not only improves segmentation accuracy (Intersection over union(IOU)), but also significantly reduces computation cost (CPU operating time T ), while handling three types of images. Experiments also indicate that it is not only more robust to different initial contours as well as different noise, but also more competent to process images with intensity non-uniformity. Show more
Keywords: Image segmentation, partial derivative, intensity non-uniformity, optimization
DOI: 10.3233/JIFS-237629
Citation: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 11003-11024, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]