Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ge, Pengqianga | Chen, Yiyanga; * | Wang, Guinaa | Weng, Guironga | Chen, Hongtianb
Affiliations: [a] School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China | [b] Department of Automation, Shanghai Jiao Tong University, Shanghai, China
Correspondence: [*] Corresponding author. Yiyang Chen, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China. E-mail: [email protected].
Abstract: Active contour model (ACM) is considered as one of the most frequently employed models in image segmentation due to its effectiveness and efficiency. However, the segmentation results of images with intensity non-uniformity processed by the majority of existing ACMs are possibly inaccurate or even wrong in the forms of edge leakage, long convergence time and poor robustness. In addition, they usually become unstable with the existence of different initial contours and unevenly distributed intensity. To better solve these problems and improve segmentation results, this paper puts forward an ACM approach using adaptive local pre-fitting energy (ALPF) for image segmentation with intensity non-uniformity. Firstly, the pre-fitting functions generate fitted images inside and outside contour line ahead of iteration, which significantly reduces convergence time of level set function. Next, an adaptive regularization function is designed to normalize the energy range of data-driven term, which improves robustness and stability to different initial contours and intensity non-uniformity. Lastly, an improved length constraint term is utilized to continuously smooth and shorten zero level set, which reduces the chance of edge leakage and filters out irrelevant background noise. In contrast with newly constructed ACMs, ALPF model not only improves segmentation accuracy (Intersection over union(IOU)), but also significantly reduces computation cost (CPU operating time T), while handling three types of images. Experiments also indicate that it is not only more robust to different initial contours as well as different noise, but also more competent to process images with intensity non-uniformity.
Keywords: Image segmentation, partial derivative, intensity non-uniformity, optimization
DOI: 10.3233/JIFS-237629
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 11003-11024, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]