Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Wu, Yisheng | Jin, Xin | Huang, Haiping
Article Type: Research Article
Abstract: This paper focuses on the task of Point-of-interest (POI) recommendation whose goal is to generate a list of POIs for a target user based on his or her history check-in records. Different from the traditional recommendation tasks (e.g., movie recommendation), there are many factors, like temporal factor and geographical factor, which make a great influence on user preference. Though existing POI recommendation methods tend to model the user preference from temporal factor, geographical factor or social factor, they fail to model these factors into a jointly model, leading to learn the suboptimal user preference. To tackle this issue, we propose …a Muti-channel Graph Attention Network (MGAN) for POI recommendation which learns the user preference from multiple aspects in a unify model. Specifically, MGAN first constructs several graphs with corresponding contextual features to capture the user preference from temporal, geographical, semantic and social aspects. Then MGAN leverages the graph attention networks to learn the representations of POIs from these graphs. Finally, MGAN estimates the user preference from the history check-in records and other similar users via the learned POI representations. We conduct extensive experiments on real-world datasets. And the results indicate that our proposed MGAN outperforms mainstream POI recommendation methods. Show more
Keywords: Point-of-interest, recommendation, graph attention network, temporal, geographical
DOI: 10.3233/JIFS-222952
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 8375-8385, 2023
Authors: Deng, Xue | Geng, Fengting | Fang, Wen | Huang, Cuirong | Liang, Yong
Article Type: Research Article
Abstract: By considering the stock market’s fuzzy uncertainty and investors’ psychological factors, this paper studies the portfolio performance evaluation problems with different risk attitudes (optimistic, pessimistic, and neutral) by the Data Envelopment Analysis (DEA) approach. In this work, the return rates of assets are characterized as trapezoidal fuzzy numbers, whose membership functions with risk attitude parameters are described by exponential expression. Firstly, these characteristics with risk attitude are strictly derived including the possibilistic mean, variance, semi-variance, and semi-absolute deviation based on possibility theory. Secondly, three portfolio models (mean-variance, mean-semi-variance, and mean-semi-absolute-deviation) with different risk attitudes are proposed. Thirdly, we prove the …real frontiers determined by our models are concave functions through mathematical theoretical derivation. In addition, two novel indicators are defined by difference and ratio formulas to characterize the correlation between DEA efficiency and portfolio efficiency. Finally, numerical examples are given to verify the feasibility and effectiveness of our model. No matter what risk attitude an investor holds, the DEA can generate approximate real frontiers. Correlation analysis indicates that our proposed approach outperforms in evaluating portfolios with risk attitudes. At the same time, our model is an improvement of Tsaur’s work (2013) which did not study the different risk measures, and an extension of Chen et al.’s work (2018) which only considered risk-neutral attitude. Show more
Keywords: Portfolio performance evaluation, risk attitude, data envelopment analysis (DEA), possibility theory, real frontier
DOI: 10.3233/JIFS-223543
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 8387-8411, 2023
Authors: Lin, Sihong | Zhang, Kunbin | Guan, Dun | He, Linjie | Chen, Yumin
Article Type: Research Article
Abstract: Intrusion detection systems have become one of the important tools for network security due to the frequent attacks brought about by the explosive growth of network traffic. Autoencoder is an unsupervised learning model with a neural network structure. It has a powerful feature learning capability and is effective in intrusion detection. However, its network construction suffers from overfitting and gradient disappearance problems. Traditional granular computing methods have advantages in solving such problems, but the process is relatively complex, the granularity dimension is high, and the computational cost is large, which is not suitable for application in intrusion detection systems. To …address these problems, we propose a novel autoencoder: Granular AutoEncoders (GAE). The granulation reference set is constructed by random sampling. The granulation of training samples is based on single-feature similarity in a reference set to form granules. The granulation of multiple features results in granular vectors. Some operations of granules are defined. Furthermore, we propose some granular measures, including granular norms and granular loss functions. The GAE is further applied to the field of intrusion detection by designing an anomaly detection algorithm based on the GAE. The algorithm determines whether the network flows are anomalous by comparing the difference between an input granular vector and its output granular vector that is reconstructed by the GAE. Finally, some experiments are conducted using an intrusion detection dataset, comparing multiple metrics in terms of precision, recall, and F1-Score. The experimental results validate the correctness and effectiveness of the intrusion detection method based on GAE. And contrast experiments show that the proposed method has stronger ability for detecting anomalies than the correlation algorithms. Show more
Keywords: Granular computing, intrusion detection, autoencoder, deep Learning, anomaly detection
DOI: 10.3233/JIFS-223649
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 8413-8424, 2023
Authors: Shanmukha, M.C. | Lee, Sokjoon | Usha, A. | Shilpa, K.C. | Azeem, Muhammad
Article Type: Research Article
Abstract: Topological indices and coindices are numerical invariants that relate to quantitative structure property/activity connections. The purpose of topological indices and coindices were introduced to draw the data related to chemical graphs with respect to adjacent & non adjacent pairs of vertex degrees respectively. These indices equip the researchers with a lot of information related to the properties and structure of the chemical compound. In this article, CoM-polynomials for molecular graph of linear and multiple Anthracene are computed from which eleven degree based topological coindices are derived.
Keywords: CoM-polynomial, topological coindex, anthracene
DOI: 10.3233/JIFS-223947
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 8425-8436, 2023
Authors: Devi Sri Nandhini, M. | Pradeep, Gurunathan
Article Type: Research Article
Abstract: Sentiment analysis is the contextual analysis of words to retrieve the social opinion of a brand which aids the business firms/institutions to know the impact of their products/services. It is habitual that users may express different opinions regarding various aspects of the same entity. Therefore, there is a strong demand to extract all the opinion targets may those be explicitly mentioned aspects or implicit aspects which are not directly specified in the reviews. In this context, comparatively less amount of work has been carried out concerning implicit aspect detection. The proposed work has been dedicated solely to extracting the implicit …aspects using a dynamic approach based on the type of sentence containing the clues for implicit aspect. A novel aspect pointer compendium (APC) has been developed that catalyzes the task of finding implicit aspects to the maximum extent possible. The APC incorporates the usage of different types of clues such as synonym clues, context clues, phrase clues, and partially implicit aspects that aid in the detection of hidden aspects. Based on this idea, the proposed work classifies the implicit aspect sentences into six types and proceeds with the task in an efficient manner. To strengthen the task of implicit aspect detection, the proposed work utilizes a hybrid technique encompassing APC, domain-specific adjective-noun collocation list (DSANCL), and the explicit aspect-opinion word pairs extracted from the reviews. The experimentation and results reveal that the proposed hybrid approach shows a good improvement in terms of the efficacy of extracting the implicit aspects as compared to the existing baseline models. Show more
Keywords: Implicit aspect detection, aspect pointer compendium, partially implicit aspects
DOI: 10.3233/JIFS-222927
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 8437-8450, 2023
Authors: Yang, Yali | Zhang, Tianwei
Article Type: Research Article
Abstract: This paper firstly establishes the discrete-time lattice networks for nonlocal stochastic competitive neural networks with reaction diffusions and fuzzy logic by employing a mix techniques of finite difference to space variables and Mittag-Leffler time Euler difference to time variable. The proposed networks consider both the effects of spatial diffusion and fuzzy logic, whereas most of the existing literatures focus only on discrete-time networks without spatial diffusion. Firstly, the existence of a unique ω-anti-periodic in distribution to the networks is addressed by employing Banach contractive mapping principle and the theory of stochastic calculus. Secondly, global exponential convergence in mean-square sense to …the networks is discussed on the basis of constant variation formulas for sequences. Finally, an illustrative example is used to show the feasible of the works in the current paper with the help of MATLAB Toolbox. The work in this paper is pioneering in this regard and it has created a certain research foundations for future studies in this area. Show more
Keywords: Lattice, reaction diffusion, stochastic, finite difference method
DOI: 10.3233/JIFS-223495
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 8451-8470, 2023
Authors: Comakli Sokmen, Özlem | yılmaz, Mustafa
Article Type: Research Article
Abstract: The hierarchical Chinese postman problem (HCPP) aims to find the shortest tour or tours by passing through the arcs classified according to precedence relationship. HCPP, which has a wide application area in real-life problems such as shovel snow and routing patrol vehicles where precedence relations are important, belongs to the NP-hard problem class. In real-life problems, travel time between the two locations in city traffic varies due to reasons such as traffic jam, weather conditions, etc. Therefore, travel times are uncertain. In this study, HCPP was handled with the chance-constrained stochastic programming approach, and a new type of problem, the …hierarchical Chinese postman problem with stochastic travel times, was introduced. Due to the NP-hard nature of the problem, the developed mathematical model with stochastic parameter values cannot find proper solutions in large-size problems within the appropriate time interval. Therefore, two new solution approaches, a heuristic method based on the Greedy Search algorithm and a meta-heuristic method based on ant colony optimization were proposed in this study. These new algorithms were tested on modified benchmark instances and randomly generated problem instances with 817 edges. The performance of algorithms was compared in terms of solution quality and computational time. Show more
Keywords: Optimization, arc routing problems, chance-constrained stochastic programming, new efficient algorithm, hierarchical Chinese postman problem
DOI: 10.3233/JIFS-222097
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 8471-8492, 2023
Authors: Zhong, Cheng | Wang, Jie-Sheng | Liu, Yu
Article Type: Research Article
Abstract: The rolling bearing fault diagnosis is affected by industrial environmental noise and other factors, leading to the existence of some redundant components after signal decomposition. At the same time, the existence of the modal aliasing phenomenon in empirical mode decomposition (EMD) and the relevant improved algorithms also leads to the existence of many invalid features in the components. These phenomena have great influence on the bearing fault diagnosis. So a rolling bearing bidirectional-long short term memory (Bi-LSTM) fault diagnosis method was proposed based on segmented interception auto regressive (SIAR) spectrum analysis and information fusion. The ensemble empirical mode decomposition (EEMD), …the complementary ensemble empirical mode decomposition (CEEMD) and the robust EMD (REMD) algorithms decompose the rolling bearing fault signals, and AR spectrum analysis is performed on the obtained components respectively. By comparing the AR spectra of the components corresponding to different fault locations, the effective AR spectral values are intercepted as the eigenvalues of the data, and finally all the eigenvalues are fused to achieve the purpose of screening effective features more efficiently so as to reduce the impact of feature redundancy caused by mode aliasing on neural network training. Then the Bi-LSTM neural network was used as a rolling bearing fault diagnosis classifier, and the simulation experiments were conducted based on the rolling bearing fault signal data from Case Western Reserve University to verify the effectiveness of the proposed feature extraction and fault diagnosis method. Show more
Keywords: Rolling bearing, fault diagnosis, AR spectrum analysis, information fusion, empirical mode decomposition, LSTM
DOI: 10.3233/JIFS-222476
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 8493-8519, 2023
Authors: Rajesh, Thota Radha | Rajendran, Surendran | Alharbi, Meshal
Article Type: Research Article
Abstract: Multi-agent reinforcement learning (MARL) is a generally researched approach for decentralized controlling in difficult large-scale autonomous methods. Typical features create RL system as an appropriate candidate to develop powerful solutions in variation of healthcare fields, whereas analyzing decision or treatment systems can be commonly considered by a prolonged and sequential process. This study develops a new Penguin Search Optimization Algorithm with Multi-agent Reinforcement Learning for Disease Prediction and Recommendation (PSOAMRL-DPR) model. This research aimed to use a unique PSOAMRL-DPR algorithm to forecast diseases based on data collected from networks and the cloud by a mobile agent. The major intention of …the proposed PSOAMRL-DPR algorithm is to identify the presence of disease and recommend treatment to the patient. The model manages the agent container with different mobile agents and fetched data from dissimilar locations of the network as well as cloud. For disease detection and prediction, the PSOAMRL-DPR technique exploits deep Q-network (DQN) technique. In order to tune the hyperparameters related to the DQN technique, the PSOA technique is used. The experimental result analysis of the PSOAMRL-DPR technique is validated on heart disease dataset. The simulation values demonstrate that the PSOAMRL-DPR technique outperforms the other existing methods. Show more
Keywords: Multi-agent reinforcement learning, penguin search optimization, deep Q-learning, disease prediction, treatment recommendation
DOI: 10.3233/JIFS-223933
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 8521-8533, 2023
Authors: Wang, Jing | Cai, Qiang | Wang, Hongjun | Wei, Guiwu | Liao, Ningna
Article Type: Research Article
Abstract: Green supply chain management attaches great importance to the coordinated development of social economy and ecological environment, and requires enterprises to consider environmental protection factors in product design, packaging, procurement, production, sales, logistics, waste and recycling. Suppliers are the “source” of the entire supply chain, and the choice of green suppliers is the basis of green supply chain management, and their quality will directly affect the environmental performance of enterprises. The green supplier selection is a classical multiple attribute group decision making (MAGDM) problems. Interval-valued intuitionistic fuzzy sets (IVIFSs) are the extension of intuitionistic fuzzy sets (IFSs), and are utilized …to depict the complex and changeable circumstance. To better adapt to complex environment, the purpose of this paper is to construct a new method to solve the MAGDM problems for green supplier selection. Taking the fuzzy and uncertain character of the IVIFSs and the psychological preference into consideration, the original MABAC method based on the cumulative prospect theory (CPT) is extended into IVIFSs (IVIF-CPT-MABAC) method for MAGDM issues. Meanwhile, the method to evaluate the attribute weighting vector is calculated by CRITIC method. Finally, a numerical example for green supplier selection has been given and some comparisons is used to illustrate advantages of IVIF-CPT-MABAC method and some comparison analysis and sensitivity analysis are applied to prove this new method’s effectiveness and stability. Show more
Keywords: Multiple attribute group decision making (MAGDM), interval-valued intuitionistic fuzzy sets (IVIFSs), MABAC, cumulative prospect theory (CPT), CRITIC, green supplier selection
DOI: 10.3233/JIFS-224206
Citation: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 8535-8560, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]