Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Farwa, Shabieh | Kamran, Muhammad | Sarwar, Sundas | Kazmi, Maedah | Ahmad, Hijaz | Gepreel, Khaled A.
Article Type: Research Article
Abstract: In this work, bipolar fuzzy parameterized sets in conjunction with soft sets are studied. This research focuses on the application of bipolar fuzzy parameterized soft sets (BFPSS ), arising from association of bipolar fuzzy parameterized sets with soft sets. Some useful operations and fundamental properties of BFPSS are presented. Mainly, we aim to design a novel and comparatively labour-saving algorithm to see the efficacy of BFPSS . We discuss an application of our algorithm in pharmaceutical decision making problem based on effectiveness and harmfulness of certain drugs. However, the algorithm is equally applicable in other decision making environments as …well where BFPSS arise. By preserving the structural implication of BFPSS , we compare our technique with a most recent algorithm to prove the significance of our method. Show more
Keywords: Fuzzy sets, bipolar fuzzy sets, soft sets, bipolar fuzzy parameterized soft sets, decision making
DOI: 10.3233/JIFS-202685
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2813-2821, 2021
Authors: Zhao, Yifan | Tian, Shuicheng
Article Type: Research Article
Abstract: In order to overcome the problems of low recognition rate and long recognition time existing in traditional methods, a method for identifying hidden disaster factors in coal mines based on Naive Bayes algorithm was proposed. The posterior probability of Bayesian network is calculated to obtain the maximum value of the posterior probability, so as to judge the categories of hidden disaster factors in coal mines. The method of combining soft and hard threshold functions is used to denoise Naive Bayes network. Combined with the structural equation of coal mine concealed disaster-causing factors, the index weight of coal mine disaster-causing factors …is calculated, and a fast identification model of disaster-causing factors is built to complete the identification. Experimental results show that the quality factors of the proposed method are all higher than 8, the recognition rate is as high as 98%, and the recognition time is basically controlled within 0.8 s. Show more
Keywords: Naive bayes algorithm, coal mine, hidden disaster factors, identification
DOI: 10.3233/JIFS-202726
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2823-2831, 2021
Authors: Fan, Jianping | Wang, Shuting | Wu, Meiqin
Article Type: Research Article
Abstract: Failure modes and effects analysis (FMEA) is a useful reliability analysis technique to identify potential failure modes in a wide range of industries. However, the conventional FMEA method is deficient in dealing with the risk evaluation and prioritization method. To overcome the shortcomings, this paper presents a new risk priority model using Best-Worst Method based on D numbers (D-BWM) and the Measurement of Alternatives and Ranking according to COmpromise Solution based on D numbers (D-MARCOS). First, D numbers are used to deal with the uncertainty of FMEA team members’ subjective judgment. Second, the distance-based method is proposed to determine the …objective weight of each team member. Then, the D-BWM was used to determine the weight of risk factors. The combination rule of D number theory combined the evaluation information of multiple members into group opinions. Finally, D-MARCOS method is proposed to obtain the risk priority of the failure modes. An example and the results of comparative analysis show the method is effective. Show more
Keywords: Failure modes and effects analysis, D numbers, BWM, MARCOS
DOI: 10.3233/JIFS-202765
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2833-2846, 2021
Authors: Luo, Damei | Li, Zhaowen | Qu, Liangdong
Article Type: Research Article
Abstract: An information system (IS) is an important mathematical tool for artificial intelligence. A fuzzy probabilistic information system (FPIS), the combination of some fuzzy relations in the same universe which satisfies the probability distribution, can be seen as an IS with fuzzy relations. A FPIS overcomes the shortcoming that rough set theory assumes elements in the universe with equal probability and leads to lose some useful information. This paper integrates the probability distribution into the fuzzy relations in a FPIS and studies its reduction. Firstly, the concept of a FPIS is introduced and its reduction is proposed. Then, the fuzzy relations …in a FPIS are divided into three categories (P -necessary, P -relatively necessary and P -unnecessary fuzzy relations) according to their importance. Next, entropy measurement for a FPIS is investigated. Moreover, some reduction algorithms are constructed. Finally, an example is given to verify the effectiveness of these proposed algorithms. Show more
Keywords: Fuzzy relation, FPIS, reduction, core, uncertainty, entropy, algorithm
DOI: 10.3233/JIFS-202783
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2847-2863, 2021
Authors: Zhang, Nan | Sheng, Yuhong | Zhang, Jing | Wang, Xiaoli
Article Type: Research Article
Abstract: In uncertainty theory, parameter estimation of uncertain differential equation is a very important research direction. The parameter estimation of multifactor uncertain differential equation needs to be solved. Multifactor uncertain differential equation is a differential equation driven by multiple Liu processes. The paper introduces two methods to solve the unknown parameters of the multifactor uncertain differential equation, they are the method of moment estimation and the method of least squares estimation. Several numerical examples are used to illustrate the proposed parameter estimation methods.
Keywords: Uncertainty theory, multifactor uncertain differential equation, parameter estimation
DOI: 10.3233/JIFS-202891
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2865-2878, 2021
Authors: Moradi Zirkohi, Majid | Lin, Tsung-Chih
Article Type: Research Article
Abstract: Interval type-2 fuzzy logic systems (IT2FLSs) have better abilities to cope with uncertainties in many applications. One major drawback of IT2FLSs is the high computational cost of the iterative Karnik-Mendel (KM) algorithms in type-reduction (TR). From the practical point of view, this prevents using IT2FLS in real-world applications. To address this issue, a novel non-iterative method called Moradi-Zirkohi-Lin (MZL) TR method is proposed for computing the centroid of an IT2FLS. This makes the practical implementation of the IT2FLSs simpler. Comparative simulation results show that the proposed method outperforms the KM TR method in terms of computational burden. Besides, closer results, …in terms of accuracy, to the KM TR method among the existing non-iterative TR methods are also achieved by the proposed TR method. Show more
Keywords: Karnik-Mendel (KM) algorithms, type-reduction, non-iterative, the centroid of an interval type-2 Fuzzy Set
DOI: 10.3233/JIFS-202913
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2879-2889, 2021
Authors: Venkataramanan, C. | Ramalingam, S. | Manikandan, A.
Article Type: Research Article
Abstract: Smart farming is one of the immense applications of Wireless Sensor Networks (WSN). Still, most of the researches have been focusing on precision agriculture using WSNs. In general, the nodes within the wireless sensor systems are self-configured. Based on the application requirement, gadgets within the region of interest collect data, prepare it, and send it to the recipient. The biggest impediments to these sensor systems are collision, restricted battery, and transmission capacity. Due to these characteristics, the node battery depletes earlier, when it starts working. Currently, agriculture depends on rain due to the lack of water resources and irrigation services. …The crop development depends totally on the factors of water, the climatic conditions of the soil, etc. In large-scale agriculture, it is exceptionally problematic to analyze all the parameters accurately throughout the growing field. In this article, high-precision architecture for large-scale agriculture has been proposed. An IoT (Internet of Things) enabled WSN has been built and installed in the respective areas to measure the physical quantities regularly. In addition, Lévy-Walk Bat (LWBA) algorithm has been proposed to optimize the collected data. The prediction accuracy of the collected data is evaluated by LWBA and then, it is compared with the existing optimization algorithms with different error solvers. It has provided the exact information regarding the whole landscape and it will help the farmers to irrigate precisely. Show more
Keywords: Data prediction, error minimization, IoT, regression, machine learning, optimization, smart agriculture, SVM, WSNs
DOI: 10.3233/JIFS-202953
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2891-2904, 2021
Authors: Cen, Shixin | Yu, Yang | Yan, Gang | Yu, Ming | Kong, Yanlei
Article Type: Research Article
Abstract: As a spontaneous facial expression, micro-expression reveals the psychological responses of human beings. However, micro-expression recognition (MER) is highly susceptible to noise interference due to the short existing time and low-intensity of facial actions. Research on facial action coding systems explores the correlation between emotional states and facial actions, which provides more discriminative features. Therefore, based on the exploration of correlation information, the goal of our work is to propose a spatiotemporal network that is robust to low-intensity muscle movements for the MER task. Firstly, a multi-scale weighted module is proposed to encode the spatial global context, which is obtained …by merging features of different resolutions preserved from the backbone network. Secondly, we propose a multi-task-based facial action learning module using the constraints of the correlation between muscle movement and micro-expressions to encode local action features. Besides, a clustering constraint term is introduced to restrict the feature distribution of similar actions to improve categories’ separability in feature space. Finally, the global context and local action features are stacked as high-quality spatial descriptions to predict micro-expressions by passing through the Convolutional Long Short-Term Memory (ConvLSTM) network. The proposed method is proved to outperform other mainstream methods through comparative experiments on the SMIC, CASME-I, and CASME-II datasets. Show more
Keywords: Micro-expression recognition, multi-scale weighted module, facial action learning module, spatiotemporal network
DOI: 10.3233/JIFS-202962
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2905-2921, 2021
Authors: Liu, Liming | Li, Ping | Chu, Maoxiang | Gao, Chuang
Article Type: Research Article
Abstract: Basic oxygen furnace (BOF) steelmaking plays an important role in steelmaking process. Hence, it is necessary to study BOF steelmaking modeling. In this paper, a novel regression algorithm is proposed by using nonparallel support vector regression with weight information (WNPSVR) for the end-point prediction of BOF steelmaking. The weight information is excavated by K -nearest neighbors (KNNs) algorithm. Since the whale optimization algorithm (WOA) has the characteristics of fast convergence speed and a few adjustment parameters, WOA is applied to optimize the parameters in the objective function of WNPSVR. Compared with traditional prediction models, WNPSVR-WOA is not easy to fall …into local minimum values and is insensitive to noise. Thus, the prediction and control of molten steel end-point information are more accurate. Experimental results verify the effectiveness and feasibility of the proposed model. Within different error bounds (0.005 wt.% for carbon content model and 10°C for temperature model), the hit rates of carbon content and temperature are 89% and 95%, respectively. Meanwhile, a double hit rate of 85% is achieved. The above results conclude that our WNPSVR-WOA has important reference value for actual BOF application and can improve the steel product quality. Moreover, WNPSVR-WOA can also be used to other fields. Show more
Keywords: Basic oxygen furnace, end-point information prediction, nonparallel support vector regression, weight information, whale optimization algorithm
DOI: 10.3233/JIFS-210007
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2923-2937, 2021
Authors: Jyothi, R.L. | Rahiman, M. Abdul
Article Type: Research Article
Abstract: Binarization is the most important stage in historical document image processing. Efficient working of character and word recognition algorithms depend on effective segmentation methods. Segmentation algorithms in turn depend on images free of noises and degradations. Most of these historical documents are illegible with degradations like bleeding through degradation, faded ink or faint characters, uneven illumination, contrast variation, etc. For effective processing of these document images, efficient binarization algorithms should be devised. Here a simple modified version of the Convolutional Neural Network (CNN) is proposed for historical document binarization. AOD-Net architecture for generating dehazed images from hazed images is modified …to create the proposed network.The new CNN model is created by incorporating Difference of Concatenation layer (DOC), Enhancement layer (EN) and Thresholding layer into AOD-Net to make it suitable for binarization of highly degraded document images. The DOC layer and EN layer work effectively in solving degradation that exists in the form of low pass noises. The complexity of working of the proposed model is reduced by decreasing the number of layers and by introducing filters in convolution layers that work with low inter-pixel dependency. This modified version of CNN works effectively with a variety of highly degraded documents when tested with the benchmark historical datasets. The main highlight of the proposed network is that it works efficiently in a generalized manner for any type of document images without further parameter tuning. Another important highlight of this method is that it can handle most of the degradation categories present in document images. In this work, the performance of the proposed model is compared with Otsu, Sauvola, and three recent Deep Learning-based models. Show more
Keywords: Binarization, historical document images, degradation, difference of concatenated convolutions, enhancement layer
DOI: 10.3233/JIFS-210015
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2939-2952, 2021
Authors: Zhang, Lingyun | Zhang, Pingjian
Article Type: Research Article
Abstract: Computational aesthetics, which uses computers to learn human aesthetic habits and ultimately replace humans in scoring images, has become a hot topic in recent years due to its wide application. Most of the initial research is to manually extract features and use classifiers such as support vector machines to score images. With the development of deep learning, traditional manual feature extraction methods are gradually replaced by convolutional neural networks to extract more comprehensive features. However, it is a huge challenge to artificially design an aesthetic neural network. Recently, Neural Architecture Search has upsurged to find suitable neural networks for many …tasks in deep learning. In this paper, we first attempt to combine Neural Architecture Search with computational aesthetics. We design and apply a customized progressive differentiable architecture search strategy to obtain a light-weighted and efficient aesthetic baseline model. In addition, we simulate the multi-person rating mechanism by outputting the distribution of the aesthetic value of the image, replacing the previous classification scheme of judging the beauty and unbeauty of the image by the threshold value, and propose a self-weighted Earth Mover’s Distance loss to better fit human subjective scoring. Based on the baseline model, we further introduce several strategies including an attention mechanism, the dilated convolution, and adaptive pooling, to enhance the performance. Finally, we design several groups of comparative experiments to demonstrate the effectiveness of our baseline aesthetic model and the introduced improvement strategies. Show more
Keywords: Artificial intelligence, deep learning, convolutional neural networks, computational aesthetics, neural architecture search
DOI: 10.3233/JIFS-210026
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2953-2967, 2021
Authors: Mohan, Prakash | Sundaram, Manikandan | Satpathy, Sambit | Das, Sanchali
Article Type: Research Article
Abstract: Techniques of data compression involve de-duplication of data that plays an important role in eliminating duplicate copies of information and has been widely employed in cloud storage to scale back the storage capacity and save information measure. A secure AES encryption de-duplication system for finding duplication with the meaning and store up it in the cloud. To protect the privacy of sensitive information whereas supporting de-duplication, The AES encryption technique and SHA-256 hashing algorithm have been utilized to encrypt the information before outsourcing. Pre-processing is completed and documents are compared and verified with the use of wordnet. Cosine similarity is …employed to see the similarity between both the documents and to perform this, a far economical VSM data structure is used. Wordnet hierarchical corpus is used to see syntax and semantics so that the identification of duplicates is done. NLTK provides a large vary of libraries and programs for symbolic and statistical natural language process (NLP) for the Python programming language that is used here for the unidentified words by cosine similarity. Within the previous strategies, cloud storage was used abundantly since similar files were allowed to store. By implementing our system, space for storing is reduced up to 85%. Since AES and SHA-256 are employed, it provides high security and efficiency. Show more
Keywords: Vector space Model, Wordnet, deduplication, cosine similarity, NLTK
DOI: 10.3233/JIFS-210038
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2969-2980, 2021
Authors: Zhang, Jin | Gu, Fu | Ji, Yangjian | Guo, Jianfeng
Article Type: Research Article
Abstract: To enable a quick and accurate access of targeted scientific and technological literature from massive stocks, here a deep content-based collaborative filtering method, namely DeepCCF, for personalized scientific and technological literature resources recommendation was proposed. By combining content-based filtering (CBF) and neural network-based collaborative filtering (NCF), the approach transforms the problem of scientific and technological literature recommendation into a binary classification task. Firstly, the word2vec is used to train the words embedding of the papers’ titles and abstracts. Secondly, an academic literature topic model is built using term frequency–inverse document frequency (TF-IDF) and word embedding. Thirdly, the search and view …history and published papers of researchers are utilized to construct the model that portrays the interests of researchers. Deep neural networks (DNNs) are then used to learn the nonlinear and complicated high-order interaction features between users and papers, and the top k recommendation list is generated by predicting the outputs of the model. The experimental results show that our proposed method can quickly and accurately capture the latent relations between the interests of researchers and the topics of paper, and be able to acquire the researchers’ preferences effectively as well. The proposed method has tremendous implications in personalized academic paper recommendation, to propel technological progress. Show more
Keywords: Scientific and technological literature resources, personalized recommendation, deep learning, recommendation algorithm
DOI: 10.3233/JIFS-210043
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2981-2996, 2021
Authors: Gao, Yin | Jia, Lifen
Article Type: Research Article
Abstract: Uncertain delay differential equations (UDDEs) charactered by Liu process can be employed to model an uncertain control system with a delay time. The stability of its solution always be a significant matter. At present, the stability in measure for UDDEs has been proposed and investigated based on the strong Lipschitz condition. In reality, the strong Lipschitz condition is so strictly and hardly applied to judge the stability in measure for UDDEs. For the sake of solving the above issue, the stability in measure based on new Lipschitz condition as a larger scale of applications is verified in this paper. In …other words, if it satisfies the strong Lipschitz condition, it must satisfy the new Lipschitz conditions. Conversely, it may not be established. An example is provided to show that it is stable in measure based on the new Lipschitz conditions, but it becomes invalid based on the strong Lipschitz condition. Moreover, a special class of UDDEs is verified to be stable in measure without any limited condition. Besides, some examples are investigated in this paper. Show more
Keywords: Stability in measure, Liu process, uncertain process, uncertain delay differential equations
DOI: 10.3233/JIFS-210089
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2997-3009, 2021
Authors: Senniappan, Gomathi | Umapathy, Prabha
Article Type: Research Article
Abstract: Renewable energy presently occupies a prominent position in India’s overall energy generation scheme. In the midst of numerous alternative energy resources, solar energy is widely used as it persists in large volumes with varying specification ratings. It is suited for both stand-alone and grid-coupled application. The Maximum Power Tracking (MPPT) scheme has a profound effect on the operating efficiency of a Photovoltaic (PV) power plant. This paper proposes an inventive hybridized Human Psychology Optimization-Perturb and Observation (HPO-PO) MPPT approach for obtaining the optimal duty cycle of the boost converter to harvest global maxima from a grid-connected Total Cost Tied (TCT) …configured PV array of 4080 W. The suggested method provides enriched performance both in steady-state, as well as in rapid and randomly changing weather conditions. Comparison studies of various MPPT procedures, including Perturbation and Observation (PO), Artificial Bee Colony (ABC), and Human Psychology Optimization (HPO) in MATLAB environment, illustrate the usefulness of the evoked system in meeting its goals. The suggested MPPT procedure has offered enhanced activities in terms of voltage quality, maximum power tracking capability, and converter efficiency compared to other methods. The recommended hybridized MPPT approach is experimentally validated on a hardware set-up using a 16-bit dsPIC30F2010 Digital Signal Controller in enhancing the behavior of the grid-connected PV system. Show more
Keywords: Photovoltaic (PV) systems, MPPT, perturb and observation, artificial bee colony, human psychology optimization (HPO), hybrid HPO-PO
DOI: 10.3233/JIFS-210114
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3011-3030, 2021
Authors: Xiao, Yanjun | Zhang, Zhenpeng | Liu, Zhenhao | Zhang, Zonghua | Zhou, Wei | Liu, Weiling
Article Type: Research Article
Abstract: In textile machines, the stability of warp tension is one of the decisive factors for the reliability, stability and product quality of weaving process. In order to meet the improving requirement for weaving efficiency and fabric quality, it is proposed that a fuzzy optimization integral separation PID warp tension control scheme based on process sampling to improve the warp tension control level of loom. Aiming at the problems of time-varying, nonlinear and variable coupling in the warp tension control system of loom, the forming mechanism of warp tension is modeled and analyzed, and the sampling scheme of warp tension based …on process is proposed. Based on the periodic change of warp tension at macro level and continuous fluctuation at micro level, the integral separation control and fuzzy optimization theory are introduced to optimize the control effect of the control system on the basis of classical PID control algorithm. Finally, the simulation and experiment show that the scheme can improve the tension controls performance and effectively reduce the tension error fluctuation. Show more
Keywords: Rapier loom, tension control, closed loop control, fuzzy optimization, integral separation control
DOI: 10.3233/JIFS-210124
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3031-3044, 2021
Authors: El-Bably, M. K. | Abo-Tabl, E. A.
Article Type: Research Article
Abstract: The present work proposes new styles of rough sets by using different neighborhoods which are made from a general binary relation. The proposed approximations represent a generalization to Pawlak’s rough sets and some of its generalizations, where the accuracy of these approximations is enhanced significantly. Comparisons are obtained between the methods proposed and the previous ones. Moreover, we extend the notion of “nano-topology”, which have introduced by Thivagar and Richard [49 ], to any binary relation. Besides, to demonstrate the importance of the suggested approaches for deciding on an effective tool for diagnosing lung cancer diseases, we include a medical …application of lung cancer disease to identify the most risk factors for this disease and help the doctor in decision-making. Finally, two algorithms are given for decision-making problems. These algorithms are tested on hypothetical data for comparison with already existing methods. Show more
Keywords: Neighborhoods, topology, rough sets, generalized nano-topology, attributes reduction and lung cancer disease
DOI: 10.3233/JIFS-210167
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3045-3060, 2021
Authors: Wu, Hsien-Chung
Article Type: Research Article
Abstract: The main purpose of this paper is to establish a mechanical procedure to determine the membership functions using the data collected from the economic and engineering problems. Determining the membership functions from the collected data may depend on the subjective viewpoint of decision makers. The mechanical procedure proposed in this paper can get rid of the subjective bias of decision makers. The concept of solid families is also proposed by regarding the sets in a family to be continuously varied. The desired fuzzy sets will be generated in the sense that its α -level sets will be identical to the …sets of the original family. In order to achieve this purpose, any arbitrary families will be rearranged as the nested families by applying some suitable functions to the original families that are formulated from the collected data. Show more
Keywords: Nested families, non-normal fuzzy sets, solid families
DOI: 10.3233/JIFS-210201
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3061-3082, 2021
Authors: Ling, Jie | Xiong, Su | Luo, Yu
Article Type: Research Article
Abstract: Uniform Resource Location (URL) is the network unified resource location system that specifies the location and access method of resources on the Internet. At present, malicious URL has become one of the main means of network attack. How to detect malicious URL timely and accurately has become an engaging research topic. The recent proposed deep learning-based detection models can achieve high accuracy in simulations, but several problems are exposed when they are used in real applications. These models need a balanced labeled dataset for training, while collecting large numbers of the latest labeled URL samples is difficult due to the …rapid generation of URL in the real application environment. In addition, in most randomly collected datasets, the number of benign URL samples and malicious URL samples is extremely unbalanced, as malicious URL samples are often rare. This paper proposes a semi-supervised learning malicious URL detection method based on generative adversarial network (GAN) to solve the above two problems. By utilizing the unlabeled URLs for model training in a semi-supervised way, the requirement of large numbers of labeled samples is weakened. And the imbalance problem can be relieved with the synthetic malicious URL generated by adversarial learning. Experimental results show that the proposed method outperforms the classic SVM and LSTM based methods. Specially, the proposed method can obtain high accuracy with insufficient labeled samples and unbalanced dataset. e.g., the proposed method can achieve 87.8% /91.9% detection accuracy when the number of labeled samples is reduced to 20% /40% of that of conventional methods. Show more
Keywords: Malicious URL detection, network security, deep learning, semi-supervised learning
DOI: 10.3233/JIFS-210212
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3083-3092, 2021
Authors: Angelini, Pierpaolo | Maturo, Fabrizio
Article Type: Research Article
Abstract: This paper focuses on logical aspects of choices being made by the consumer under conditions of uncertainty or certainty. Such logical aspects are found out to be the same. Choices being made by the consumer that should maximize her subjective utility are decisions studied by revealed preference theory. A finite number of possible alternatives is considered. They are mutually exclusive propositions identifying all quantitative states of nature of a consumption plan. Each proposition of it is expressed by a real number. This research work distinguishes it from its temporary truth value depending on the state of information and knowledge of …the consumer. Since each point of the consumption space of the consumer belongs to a two-dimensional convex set, this article focuses on conjoint distributions of mass. Indeed, the consumption space of the consumer is generated by all coherent summaries of a conjoint distribution of mass. Each point of her consumption space is connected with a weighted average of states of nature of two consumption plans jointly studied. They give rise to a conjoint distribution of mass. The consumer chooses a point of a two-dimensional convex set representing that bundle of goods actually demanded by her inside of her consumption space. This paper innovatively shows that it is nothing but a bilinear and disaggregate measure. It is decomposed into two real numbers, where each real number is a linear measure. In this paper, different measures are obtained. They can be disaggregate or aggregate measures, where the latter are independent of the notion of ordered pair of consumption plans. Show more
Keywords: 2-parallelepiped, α-product, temporary truth value, antisymmetric tensor, non-linear metric, linear metric
DOI: 10.3233/JIFS-210234
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3093-3105, 2021
Authors: Wu, Meiqin | Hou, Xiaoqing | Fan, Jianping
Article Type: Research Article
Abstract: As an extended model of data envelopment analysis (DEA), cross-efficiency is utilized in various fields. It applies the relative evaluation values of homogeneous decision-making units (DMUs) in ranking completely. Due to the non-uniqueness of DEA optimal weights, and the cross-efficiency methods focus on the aggregation of cross-efficiency matrix values. There is a low correction between the final efficiency evaluation value and the value assigned to the criteria weight or the value of the criteria. This paper uses the modified aggressive cross-efficiency model to calculate the weights of the decision-making units (DMUs). Then according to the consistency of peer-evaluation criteria, the …entropy weight method is used to aggregate the index weights to generate a set of common weights, and a new Measurement of Alternatives and Ranking according to Compromise Solution (MARCOS) method is used to calculate the utility score of DMUs that can rank them completely. Finally, a numerical case of supplier selection is offered to illustrate the feasibility and effectiveness of the proposed method. Show more
Keywords: Cross-efficiency, group decision-making, criteria utility, MARCOS method
DOI: 10.3233/JIFS-210279
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3107-3119, 2021
Authors: Liu, Donghai | Luo, Yan
Article Type: Research Article
Abstract: Although some correlation measure of intuitionistic fuzzy sets(IFSs) have been proposed, some of them cannot express the consistency of information or satisfy the axioms of similarity measure. In this paper, we present a consensus reaching process based on the concordance correlation measure of IFSs in multi-criteria decision making problems. Firstly, we define an innovative concordance correlation measure of IFSs, which not only takes the average information deviation of IFSs into account but also overcomes the disadvantages of previous correlation measures. In addition, its properties and the relationship between the defined new concordance correlation measure and Pearson correlation coefficient of IFSs …are discussed. Secondly, considering that the classical TOPSIS method cannot be applied to the correlation measure with negative values, we continue to introduce the concept of relative concordance correlation measure and propose a consensus reaching process with minimum adjustment for an innovative behavioral TOPSIS method. Furthermore, a detailed numerical example and the comparison analyses are provided to verify the advantages of the proposed method. At last, we discuss the sensitivity and stability of the method. Show more
Keywords: Concordance correlation measure, Consensus reaching process, Intuitionistic fuzy set, Behavioral TOPSIS
DOI: 10.3233/JIFS-210343
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3121-3136, 2021
Authors: Wang, Jinfeng | Huang, Shuaihui | Jiang, Fajian | Zheng, Zhishen | Ou, Jianbin | Chen, Hao | Chen, Runjian | Wang, Wenzhong
Article Type: Research Article
Abstract: Fuzzy integral in data mining is an excellent information fusion tool. It has obvious advantages in solving the combination of features and has more successful applications in classification problems. However, with the increase of the number of features, the time complexity and space complexity of fuzzy integral will also increase exponentially. This problem limits the development of fuzzy integral. This article proposes a high-efficiency fuzzy integral—Parallel and Sparse Frame Based Fuzzy Integral (PSFI) for reducing time complexity and space complexity in the calculation of fuzzy integrals, which is based on the distributed parallel computing framework-Spark combined with the concept of …sparse storage. Aiming at the efficiency problem of the Python language, Cython programming technology is introduced in the meanwhile. Our algorithm is packaged into an algorithm library to realize a more efficient PSFI. The experiments verified the impact of the number of parallel nodes on the performance of the algorithm, test the performance of PSFI in classification, and apply PSFI on regression problems and imbalanced big data classification. The results have shown that PSFI reduces the variable storage space requirements of datasets with aplenty of features by thousands of times with the increase of computing resources. Furthermore, it is proved that PSFI has higher prediction accuracy than the classic fuzzy integral running on a single processor. Show more
Keywords: Parallel computing, sparse storage, fuzzy integral, fuzzy measure
DOI: 10.3233/JIFS-210372
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3137-3159, 2021
Authors: Qiu, Liqing | Yang, Zhongqi | Zhu, Shiwei | Gu, Chunmei | Tian, Xiangbo
Article Type: Research Article
Abstract: Influence maximization is a classic network optimization problem, which has been widely used in the field of viral marketing. The influence maximization problem aims to find a fixed number of active nodes. After a specific propagation model, the number of active nodes reaches the maximum. However, the existing influence maximization algorithms are overly pursuing certain indicators of efficiency or accuracy, which cannot be well accepted by some researchers. This paper proposes an effective algorithm to balance the accuracy and efficiency of the influence maximization problem called local two-hop search algorithm (LTHS). The core of the proposed algorithm is a node …not only be affected by one-hop neighbor nodes, but also by two-hop neighbor nodes. Firstly, this paper selects initial seed nodes according to the characteristics of the node degree. Generally, the high degree of nodes regards as influential nodes. Secondly, this paper proposes a node two-hop influence evaluate function called two-hop diffusion value (THDV), which can evaluate node influence more accurately. Furthermore, in order to seek higher efficiency, this paper proposes a method to reduce the network scale. This paper conducted full experiments on five real-world social network datasets, and compared with other four well-known algorithms. The experimental results show that the LTHS algorithm is better than the comparison algorithms in terms of efficiency and accuracy. Show more
Keywords: Social network, influence maximization, local influence, heuristic algorithm
DOI: 10.3233/JIFS-210379
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3161-3172, 2021
Authors: Yiarayong, Pairote
Article Type: Research Article
Abstract: The aim of this manuscript is to apply bipolar fuzzy sets for dealing with several kinds of theories in LA -semigroups. To begin with, we introduce the concept of 2-absorbing (quasi-2-absorbing) bipolar fuzzy ideals and strongly 2-absorbing (quasi-strongly 2-absorbing) bipolar fuzzy ideals in LA -semigroups, and investigate several related properties. In particular, we show that a bipolar fuzzy set A = ( μ A P , μ A N ) over an LA -semigroup S is weakly 2-absorbing …if and only if [ B ⊙ C ] ⊙ D ⪯ A implies B ⊙ C ⪯ A or C ⊙ D ⪯ A or B ⊙ D ⪯ A for any bipolar fuzzy sets B = ( μ B P , μ B N ) , C = ( μ C P , μ C N ) and D = ( μ D P , μ D N ) . Also, we give some characterizations of quasi-strongly 2-absorbing bipolar fuzzy ideals over an LA -semigroup S by bipolar fuzzy points. In conclusion of this paper we prove that the relationship between quasi-strongly 2-absorbing bipolar fuzzy ideals over an LA -semigroup S and quasi-2-absorbing bipolar fuzzy ideals over S . Show more
Keywords: bipolar fuzzy set, 2-absorbing bipolar fuzzy ideal, strongly 2-absorbing bipolar fuzzy ideal, ℒℒ-semigroup, quasi-2-absorbing bipolar fuzzy ideal
DOI: 10.3233/JIFS-210388
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3173-3181, 2021
Authors: Zhao, Shan | Li, Zhao
Article Type: Research Article
Abstract: The interpolation functions of interval type-2 fuzzy systems and their universal approximation are investigated in this paper. Two types of fuzzification methods are designed to construct the antecedents and consequents of the type-2 inference rules. Then the properties of the fuzzy operator and the type-reduction algorithm are used to integrate all parts of the fuzzy system. Interpolation functions of interval type-2 fuzzy systems, which are proved to be universal approximators, are obtained based on three models, namely single input and single output, double inputs and single output, and multiple inputs and single output. The proposed approach is applied to approximate …experiments of dynamic systems so as to evaluate the system performance. The system parameters are optimized by the QPSO algorithm. Experimental results for several data sets are given to show the approximation performances of the proposed interpolation functions are better than those of the interpolation function of the classical type-1 fuzzy system. Show more
Keywords: Interval type-2 fuzzy system, interval type-2 fuzzy set, interpolation function, universal approximation
DOI: 10.3233/JIFS-210435
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3183-3200, 2021
Authors: Zixian, Zhang | Xuning, Liu | Zhixiang, Li | Hongqiang, Hu
Article Type: Research Article
Abstract: The influencing factors of coal and gas outburst are complex, and now the accuracy and efficiency of outburst prediction are not high. In order to obtain the effective features from influencing factors and realize the accurate and fast dynamic prediction of coal and gas outburst, this article proposes an outburst prediction model based on the coupling of feature selection and intelligent optimization classifier. Firstly, in view of the redundancy and irrelevance of the influencing factors of coal and gas outburst, we use Boruta feature selection method to obtain the optimal feature subset from influencing factors of coal and gas outburst. …Secondly, based on Apriori association rules mining method, the internal association relationship between coal and gas outburst influencing factors is mined, and the strong association rules existing in the influencing factors and samples that affect the classification of coal and gas outburst are extracted. Finally, svm is used to classify coal and gas outburst based on the above obtained optimal feature subset and sample data, and Bayesian optimization algorithm is used to optimize the kernel parameters of svm, and the coal and gas outburst pattern recognition prediction model is established, which is compared with the existing coal and gas outburst prediction model in literatures. Compared with the method of feature selection and association rules mining alone, the proposed model achieves the highest prediction accuracy of 93% when the feature dimension is 3, which is higher than that of Apriori association rules and Boruta feature selection, and the classification accuracy is significantly improved. However, the feature dimension decreased significantly, the results show that the proposed model is better than other prediction models, which further verifies the accuracy and applicability of the coupling prediction model. Show more
Keywords: Coal and gas outburst, Feature selection, Boruta, Apriori, Bayesian optimization, SVM
DOI: 10.3233/JIFS-210466
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3201-3218, 2021
Authors: Yang, Han | Qin, Keyun
Article Type: Research Article
Abstract: The theory of three-way concept analysis has been developed into an effective tool for data analysis and knowledge discovery. In this paper, we propose neutrosophic three-way concept lattice by combining neutrosophic set with three-way concept analysis and present an approach for conflict analysis by using neutrosophic three-way concept lattice. Firstly, we propose the notion of neutrosophic formal context, in which the relationships between objects and attributes are expressed by neutrosophic numbers. Three pairs of concept derivation operators are proposed. The basic properties of object-induced and attribute-induced neutrosophic three-way concept lattices are examined. Secondly, we divide the neutrosophic formal context into …three classical formal contexts and propose the notions of the candidate neutrosophic three-way concepts and the redundant neutrosophic three-way concepts. Two approaches of constructing object-induced (attribute-induced) neutrosophic three-way concept lattices are presented by using candidate, redundant and original neutrosophic three-way concepts respectively. Finally, we apply the neutrosophic formal concept analysis to the conflict analysis and put forward the corresponding optimal strategy and the calculation method of the alliance. Show more
Keywords: Three-way concept analysis, neutrosophic set, neutrosophic three-way concept lattice, conflict analysis
DOI: 10.3233/JIFS-210481
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3219-3236, 2021
Authors: He, Yan | Wei, Guiwu | Chen, Xudong
Article Type: Research Article
Abstract: The optimal supplier selection in medical instrument industries could be considered a classical MAGDM issue. The probabilistic uncertain linguistic term sets (PULTSs) could depict uncertain information well and the Taxonomy method is appropriate to compare various alternatives according to their merits and utility degree from studied attributes. In such paper, we develop a Taxonomy method for probabilistic uncertain linguistic MAGDM (PUL-MAGDM) with the completely unknown attribute weights. Above all, the score function’s definition is utilized to derive the weights of attribute based upon the CRITIC method. In addition, the probabilistic uncertain linguistic development pattern (PULDP) is improved and the smallest …development attribute value from the positive ideal solution under PULTSs is calculated to determine the optimal alternative. In the end, taking the supplier selection in medical instrument industries as an example, we demonstrate the usage of the developed algorithms. Based on this, the comparison of methods is conducted with existing methods, such as PUL-TOPSIS method, the PULWA operator, the PUL-EDAS method and the ULWA operator. The results verify that the decision-making framework is valid and effective for supplier selection. Thus, the advantage of this designed method is that it is simple to understand and easy to compute. The designed method can also contribute to the selection of suitable alternative successfully in other selection issues. Show more
Keywords: Multiple attribute group decision making (MAGDM) issues, probabilistic uncertain linguistic sets (PULTSs), taxonomy approach, CRITIC method, supplier selection
DOI: 10.3233/JIFS-210494
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3237-3250, 2021
Authors: Amsaprabhaa, M. | Nancy Jane, Y. | Khanna Nehemiah, H.
Article Type: Research Article
Abstract: Due to the COVID-19 pandemic, countries across the globe has enforced lockdown restrictions that influence the people’s socio-economic lifecycle. The objective of this paper is to predict the communal emotion of people from different locations during the COVID-19 lockdown. The proposed work aims in developing a deep spatio-temporal analysis framework of geo-tagged tweets to predict the emotions of different topics based on location. An optimized Latent Dirichlet Allocation (LDA) approach is presented for finding the optimal hyper-parameters using grid search. A multi-class emotion classification model is then built via a Recurrent Neural Network (RNN) to predict emotions for each topic …based on locations. The proposed work is experimented with the twitter streaming API dataset. The experimental results prove that the presented LDA model-using grid search along with the RNN model for emotion classification outperforms the other state of art methods with an improved accuracy of 94.6%. Show more
Keywords: Topic modeling, latent dirichlet allocation, grid search, multi-class emotion classification, recurrent neural network
DOI: 10.3233/JIFS-210544
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3251-3264, 2021
Authors: Chen, Hongyu | Wang, Shengsheng
Article Type: Research Article
Abstract: Since the end of 2019, the COVID-19, which has swept across the world, has caused serious impacts on public health and economy. Although Reverse Transcription-Polymerase Chain Reaction (RT-PCR) is the gold standard for clinical diagnosis, it is very time-consuming and labor-intensive. At the same time, more and more people have doubted the sensitivity of RT-PCR. Therefore, Computed Tomography (CT) images are used as a substitute for RT-PCR. Powered by the research of the field of artificial intelligence, deep learning, which is a branch of machine learning, has made a great success on medical image segmentation. However, general full supervision methods …require pixel-level point-by-point annotations, which is very costly. In this paper, we put forward an image segmentation method based on weakly supervised learning for CT images of COVID-19, which can effectively segment the lung infection area and doesn’t require pixel-level labels. Our method is contrasted with another four weakly supervised learning methods in recent years, and the results have been significantly improved. Show more
Keywords: COVID-19, deep learning, weakly supervised learning, computed tomography, automated segmentation
DOI: 10.3233/JIFS-210569
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3265-3276, 2021
Authors: Sharma, Sudeep | Padhy, Prabin K.
Article Type: Research Article
Abstract: The combination of machine learning and artificial intelligent has already proved its potential in achieving remarkable results for modeling unknown systems. These techniques commonly use enough data samples to train and optimize their architectures. In the present era, with the availability of enough storage and computation power, the machine learning based data-driven system modeling approaches are getting popular as they do not interrupt the normal system operations and work solely on collected data. This work proposes a data-driven parametric neural network technique for modeling time-delayed systems, which is demanding but challenging area of research and comes under nonlinear optimization problem. …The key contribution of this work is the inclusion of an extended B-polynomial into the network structure for estimating time-delayed first and second order system models. These type of models extensively used for addressing simulations, predictions, controlling and monitoring related issues. Also, an adaptive learning based convergence of the proposed algorithm is proved with the help of the Lyapunov stability theory. The proposed algorithm compared with existing techniques on some well-known example problems. A real practical system plant is also included for validating the proposed concept. Show more
Keywords: Identification, estimation, modeling, adaptive learning, time delays, neural networks, lyapunov theory, intelligent systems
DOI: 10.3233/JIFS-210580
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3277-3288, 2021
Authors: Zhou, Qing | Peng, Wei | Tang, Dai
Article Type: Research Article
Abstract: In many countries, outpatients generally visit a major hospital without a referral from health professionals due to the shortage of family physicians. Not knowing at which medical specialty department to register, outpatients have to wait in long queues to consult receptionists. We propose to alleviate this situation via a computer system offering an automatic recommendation of departments (ARD) to outpatients, which identifies the appropriate medical department for outpatients according to their chief complaints. Besides, ARD systems can boost the emerging services of online hospital registration and online medical diagnosis, which require that the outpatients know the correct department first. ARD …is a typical problem of text classification. Nevertheless, off-the-shelf tools for text processing may not suit ARD, because the chief complaints of outpatients are generally brief and contain much noisy information. To solve this problem, we propose ARD-K, a deep learning framework incorporating external medical knowledge sources. We also propose a dual-attention mechanism to mitigate the interference of noisy words and knowledge entities. The performance of ARD-K is compared with some off-the-shelf techniques on a real-world dataset. The results demonstrate the effectiveness of ARD-K for the automatic recommendation of departments to outpatients. Show more
Keywords: Automatic recommendation of departments, medical knowledge graph, attention mechanism, clinical text classification
DOI: 10.3233/JIFS-210599
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3289-3299, 2021
Authors: Yan, Mian | Feng, Jianghong | Xu, Su Xiu
Article Type: Research Article
Abstract: In recent years, the problem of complex multi-attribute group decision-making (MAGDM) in uncertain environments has received increasing attention. In evaluating MAGDM problems, obtaining the objective attribute weights is very important. Considering the excellent performance of intuitive fuzzy linguistic sets in dealing with uncertain information, this paper introduces a new interval-valued intuitionistic pure linguistic entropy weight (IVIPLEW) method for determining attribute weights and evaluating MAGDM problems. The IVIPLEW method considers the cases of missing values, and uses the conventional interval-valued intuitionistic pure linguistic (IVIPL) expectations to supplement the missing values. This method of dealing with missing values not only considers the …expectations of experts, but also prevents fluctuations in linguistic variables from impacting the decision results. This paper establishes an analysis framework that allows the IVIPLEW method to be applied to MAGDM problems, and presents a practical case study that illustrates the practicality and effectiveness of IVIPLEW. The results are quite satisfactory. The effectiveness of the proposed method is demonstrated through a comparison with the IVIPL information aggregation method. Furthermore, the robustness of the IVIPLEW method is verified through a sensitivity analysis. The results presented in this paper show that the IVIPLEW method is applicable to a wide range of MAGDM problems. Show more
Keywords: Interval-valued intuitionistic pure linguistic, entropy weight method, group decision-making, attribute weights
DOI: 10.3233/JIFS-210609
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3301-3316, 2021
Authors: Cheng, Haodong | Han, Meng | Zhang, Ni | Wang, Le | Li, Xiaojuan
Article Type: Research Article
Abstract: The researcher proposed the concept of Top-K high-utility itemsets mining over data streams. Users directly specify the number K of high-utility itemsets they wish to obtain for mining with no need to set a minimum utility threshold. There exist some problems in current Top-K high-utility itemsets mining algorithms over data streams including the complex construction process of the storage structure, the inefficiency of threshold raising strategies and utility pruning strategies, and large scale of the search space, etc., which still can not meet the requirement of real-time processing over data streams with limited time and memory constraints. To solve this …problem, this paper proposes an efficient algorithm based on dataset projection for mining Top-K high-utility itemsets from a data stream. A data structure CIUDataListSW is also proposed, which stores the position of the item in the transaction to effectively obtain the initial projected dataset of the item. In order to improve the projection efficiency, this paper innovates a new reorganization technology for projected transactions in common batches to maintain the sort order of transactions in the process of dataset projection. Dual pruning strategy and transaction merging mechanism are also used to further reduce search space and dataset scanning costs. In addition, based on the proposed CUDH S W structure, an efficient threshold raising strategy CUD is used, and a new threshold raising strategy CUDCB is designed to further shorten the mining time. Experimental results show that the algorithm has great advantages in running time and memory consumption, and it is especially suitable for the mining of high-utility itemsets of dense datasets. Show more
Keywords: Itemset mining, utility mining, high utility itemsets, data streams, Top-K high-utility
DOI: 10.3233/JIFS-210610
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3317-3338, 2021
Authors: Singh, Deepika | Saha, Anju | Gosain, Anjana
Article Type: Research Article
Abstract: Imbalanced dataset classification is challenging because of the severely skewed class distribution. The traditional machine learning algorithms show degraded performance for these skewed datasets. However, there are additional characteristics of a classification dataset that are not only challenging for the traditional machine learning algorithms but also increase the difficulty when constructing a model for imbalanced datasets. Data complexity metrics identify these intrinsic characteristics, which cause substantial deterioration of the learning algorithms’ performance. Though many research efforts have been made to deal with class noise, none of them focused on imbalanced datasets coupled with other intrinsic factors. This paper presents a …novel hybrid pre-processing algorithm focusing on treating the class-label noise in the imbalanced dataset, which suffers from other intrinsic factors such as class overlapping, non-linear class boundaries, small disjuncts, and borderline examples. This algorithm uses the wCM complexity metric (proposed for imbalanced dataset) to identify noisy, borderline, and other difficult instances of the dataset and then intelligently handles these instances. Experiments on synthetic datasets and real-world datasets with different levels of imbalance, noise, small disjuncts, class overlapping, and borderline examples are conducted to check the effectiveness of the proposed algorithm. The experimental results show that the proposed algorithm offers an interesting alternative to popular state-of-the-art pre-processing algorithms for effectively handling imbalanced datasets along with noise and other difficulties. Show more
Keywords: Classification, class imbalance, data complexity, overlapping, bayes error, pre-processing, learning algorithms
DOI: 10.3233/JIFS-210624
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3339-3354, 2021
Authors: Zhu, Kun | Zhang, Shuai | Zhang, Wenyu | Zhang, Zhiqiang
Article Type: Research Article
Abstract: Accurate taxi demand forecasting is significant to estimate the change of demand to further make informed decisions. Although deep learning methods have been widely applied for taxi demand forecasting, they neglect the complexity of taxi demand data and the impact of event occurrences, making it hard to effectively model the taxi demand in highly dynamic areas (e.g., areas with frequent event occurrences). Therefore, to achieve accurate and stable taxi demand forecasting in highly dynamic areas, a novel hybrid deep learning model is proposed in this study. First, to reduce the complexity of taxi demand time series, the seasonal-trend decomposition procedures …based on loess is employed to decompose the time series into three simpler components (i.e., seasonal, trend, and remainder components). Then, different forecasting methods are adopted to handle different components to obtain robust forecasting results. Moreover, considering the instability and nonlinearity of the remainder component, this study proposed to fuse the event features (in particular, text data) to capture the unusual fluctuation patterns of remainder component and solve its extreme value problem. Finally, genetic algorithm is applied to determine the optimal weights for integrating the forecasting results of three components to obtain the final taxi demand. The experimental results demonstrate the better accuracy and reliability of the proposed model compared with other baseline forecasting models. Show more
Keywords: Taxi demand forecasting, deep learning, seasonal-trend decomposition procedures based on loess, data fusion, text data, genetic algorithm
DOI: 10.3233/JIFS-210657
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3355-3371, 2021
Authors: Riaz, Muhammad | Habib, Anam | Aslam, Muhammad
Article Type: Research Article
Abstract: A cubic bipolar fuzzy set (CBFS) is a new approach in computational intelligence and decision-making under uncertainty. This model is the generalization of bipolar fuzzy sets to deal with two-sided contrasting features which can describe the information with a bipolar fuzzy number and an interval-valued bipolar fuzzy number simultaneously. In this paper, the Dombi’s operations are analyzed for information aggregation of cubic bipolar fuzzy numbers (CBFNs). The Dombi’s operations carry the advantage of more pliability and reliability due to the existence of their operational parameters. Owing to the pliable nature of Dombi’s operators, this research work introduces new aggregation operators …named as cubic bipolar fuzzy Dombi weighted averaging (CBFDWA) operator and cubic bipolar fuzzy Dombi ordered weighted averaging (CBFDOWA) operator with ℙ -order and ℝ -order, respectively. Additionally, this paper presents some significant characteristics of suggested operators including, idempotency, boundedness and monotonicity. Moreover, a robust multi-criteria decision making (MCDM) technique is developed by using ℙ -CBFDWA and ℝ -CBFDWA operators. Based on the suggested operators a practical application is demonstrated towards MCDM under uncertainty. The comparison analysis of suggested Dombi’s operators with existing operators is also given to discuss the rationality, efficiency and applicability of these operators. Show more
Keywords: Cubic bipolar fuzzy sets, Dombi’s operations, cubic bipolar fuzzy Dombi weighted averaging operator, cubic bipolar fuzzy Dombi ordered weighted averaging operator, ℙ-order and ℝ-order operations, multi-criteria decision making
DOI: 10.3233/JIFS-210667
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3373-3393, 2021
Authors: Duan, Huiming | Huang, Jiangbo | Wang, Siqi | He, Chenglin
Article Type: Research Article
Abstract: The stock market is an important embodiment of a national economy and financial activities and has an important impact on a country, enterprises and individuals. Stock forecasting can allow investment institutions and investors to understand the trend of the stock market in advance, which is a challenging and meaningful study. First, through the impulse phenomenon of the stock market, this paper discusses the problem of stock price prediction with delay, and the impulse delay differential equation is established. Second, according to the difference between the differential and the difference, the nonlinear delay grey prediction model is established. Next, the model …parameters are estimated and the solving steps are obtained. The nonlinear parameters and delay time are optimized by the particle swarm optimization algorithm. Finally, the new model is applied to the prediction of the Shanghai stock market and the Shenzhen stock market closing indexes; the results show that the new model can effectively predict stock prices, which is much better than the existing four grey models and a time series model. Show more
Keywords: Stock price, impulse delay, grey model, forecasting
DOI: 10.3233/JIFS-210726
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3395-3413, 2021
Authors: Hu, Junying | Qian, Xiaofei | Cheng, Hao | Tan, Changchun | Liu, Xinbao
Article Type: Research Article
Abstract: Based on phase space reconstruction (PSR) and hybrid VNS-SVR model, a remaining useful life (RUL) prediction method for aircraft engines is proposed. The proposed hybrid model combines support vector regression (SVR), which has been successfully adopted for regression problems, with the variable neighborhood search (VNS). First, the phase space reconstruction is used to transform the selected one-dimensional performance sequences of aircraft engines into matrix forms, which increases the data information and improve the learning efficiency of the model effectively. Then, SVR is used to construct the prediction model. Meanwhile, a VNS algorithm is proposed to optimize the kernel parameters. Finally, …the hybrid model is used to RUL prediction of the aircraft engines. The experimental results show that the method has a good prediction performance. Show more
Keywords: Remaining useful life, support vector regression, phase space reconstruction, variable neighborhood search, aircraft engine
DOI: 10.3233/JIFS-210740
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3415-3428, 2021
Authors: Xiao, Yanjun | Han, Furong | Ding, Yvheng | Liu, Weiling
Article Type: Research Article
Abstract: The safety and stability of the rapier loom during operation directly impact the quality of the fabric. Therefore, it is of great significance to carry out fault diagnosis research on rapier looms. In order to solve the problems of low diagnosis efficiency, untimely diagnosis, and high maintenance cost of existing rapier looms in manual troubleshooting of loom failures. This paper proposes a new intelligent fault diagnosis method for rapier looms based on the fusion of expert system and fault tree. A new expert system knowledge base is formed by combining the dynamic fault tree model with the expert system knowledge …base. It solves the problem that the traditional expert system cannot achieve precise positioning in the face of complex fault types. Construct the rapier loom’s fault diagnosis model, build the intelligent diagnosis platform, and finally realize the intelligent fault diagnosis of the rapier loom. Experimental results show that the algorithm can quickly diagnose and locate rapier loom faults. Compared with the current intelligent diagnosis algorithm, the algorithm structure is simplified, which provides a theoretical basis for the broad application of intelligent fault diagnosis on rapier looms. Show more
Keywords: Rapier loom, expert system, fault tree, fault diagnosis
DOI: 10.3233/JIFS-210741
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3429-3441, 2021
Authors: Xu, Haiyan | Chang, Yuqing | Zhao, Yong | Wang, Fuli
Article Type: Research Article
Abstract: Accurate and stable wind speed forecasting is an essential means to ensure the safe and stable operation of wind power integration. Therefore, a new hybrid model was proposed to improve wind speed forecasting performance, consisting of data pre-processing, model forecasting, and error correction (EC). The specific modeling process is as follows: (a) A wind speed series was decomposed into a series of subseries with different frequencies utilizing the ensemble empirical mode decomposition (EEMD) method. Afterward, various subseries were divided into high-frequency components, intermediate-frequency components, and low-frequency components based on their sample entropies (SE). (b) Three frequency components were forecast by …separately employing the hybrid model of convolutional neural network and long short-term memory network (CNN-LSTM), long short-term memory network (LSTM), and Elman neural network. (c) Subsequently, an error sequence was further forecast using CNN-LSTM. (d) Finally, three actual datasets were used to forecast the multi-step wind speed, and the forecasting performance of the proposed model was verified. The test results show that the forecasting performance of the proposed model is better than the other 13 models in three actual datasets. Show more
Keywords: Ensemble empirical mode decomposition, long short-term memory network, elman neural network, error correction
DOI: 10.3233/JIFS-210779
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3443-3462, 2021
Authors: Luo, Jun | Tian, Qin | Xu, Meng
Article Type: Research Article
Abstract: Aiming at the disadvantages of slow convergence and the premature phenomenon of the butterfly optimization algorithm (BOA), this paper proposes a modified BOA (MBOA) called reverse guidance butterfly optimization algorithm integrated with information cross-sharing. First, the quasi-opposition concept is employed in the global search phase that lacks local exploitation capabilities to broaden the search space. Second, the neighborhood search weight factor is added in the local search stage to balance exploration and exploitation. Finally, the information cross-sharing mechanism is introduced to enhance the ability of the algorithm to jump out of the local optima. The proposed MBOA is tested in …fourteen benchmark functions and three constrained engineering problems. The series of experimental results indicate that MBOA shows better performance in terms of convergence speed, convergence accuracy, stability as well as robustness. Show more
Keywords: Butterfly optimization algorithm, benchmark function, information cross-sharing, neighborhood search weight factor, reverse guidance
DOI: 10.3233/JIFS-210815
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3463-3484, 2021
Authors: Zhang, Lijun | Duan, Lixiang | Hong, Xiaocui | Liu, Xiangyu | Zhang, Xinyun
Article Type: Research Article
Abstract: Machinery operates well under normal conditions in most cases; far fewer samples are collected in a fault state (minority samples) than in a normal state, resulting in an imbalance of samples. Common machine learning algorithms such as deep neural networks require a significant amount of data during training to avoid overfitting. These models often fail to detect minority samples when the input samples are imbalanced, which results in missed diagnoses of equipment faults. As an effective method to enhance minority samples, Deep Convolution Generative Adversarial Network (DCGAN) does not fundamentally address the problem of unstable Generative Adversarial Network (GAN) training. …This study proposes an improved DCGAN model with improved stability and sample balance for achieving greater classification accuracy over minority samples. First, spectral normalization is performed on each convolutional layer, improving stability in the DCGAN discriminator. Then, the improved DCGAN model is trained to generate new samples that are different from the original samples but with a similar distribution when the Nash equilibrium is reached. Four indices—Inception Score (IS), Fréchet Inception Distance Score (FID), Peak Signal to Noise Ratio (PSNR), and Structural Similarity (SSIM)—were used to quantitatively evaluate of the generated images. Finally, the Balance Degree of Samples (BDS) index was proposed, and the new samples are proportionally added to the original samples to improve sample balance, resulting in the formation of several groups of datasets with different balance degrees, and Convolutional Neural Network (CNN) models are used to classify these samples. With experimental analysis on the reciprocating compressor, the variance of lost data is found to be less than 1% of the original value, representing an increase in stabilityof the model to generate diverse and high-quality sample images, as compared with that of the unmodified model. The classification accuracy exceeds 95% and tends to remain stable when the balance degree of samples is greater than 80%. Show more
Keywords: Imbalanced, data enhancement, fault diagnosis, DCGAN, CNN
DOI: 10.3233/JIFS-210843
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3485-3498, 2021
Authors: Moussa, Mona M. | Shoitan, Rasha | Abdallah, Mohamed S.
Article Type: Research Article
Abstract: Finding the common objects in a set of images is considered one of the recent challenges in different computer vision tasks. Most of the conventional methods have proposed unsupervised and weakly supervised co-localization methods to find the common objects; however, these methods require producing a huge amount of region proposals. This paper tackles this problem by exploiting supervised learning benefits to localize the common object in a set of unlabeled images containing multiple objects or with no common objects. Two stages are proposed to localize the common objects: the candidate box generation stage and the matching and clustering stage. In …the candidate box generation stage, the objects are localized and surrounded by the bounding boxes. The matching and clustering stage is applied on the generated bounding boxes and creates a distance matrix based on a trained Siamese network to reflect the matching percentage. Hierarchical clustering uses the generated distance matrix to find the common objects and create clusters for each one. The proposed method is trained on PASCAL VOC 2007 dataset; on the other hand, it is assessed by applying different experiments on PASCAL VOC 2007 6×2 and Object Discovery datasets, respectively. The results reveal that the proposed method outperforms the conventional methods by 8% to 40% in terms of corloc metric. Show more
Keywords: Object localization, Siamese network, hierarchical clustering, and convolutional neural networks (CNNs)
DOI: 10.3233/JIFS-210854
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3499-3508, 2021
Authors: Meixin, Huang | Caixia, Liu
Article Type: Research Article
Abstract: Fractional order grey model is effective in describing the uncertainty of the system. In this paper, we propose a novel variable-order fractional discrete grey model (short for VOFDGM(1,1)) by combining the discrete grey model and variable-order fractional accumulation, which is a more general form of the DGM(1,1). The detailed modeling procedure of the presented model is first systematically studied, in particular, matrix perturbation theory is used to prove the validity in terms of the stability of the model, and then, the model parameters are optimized by the whale optimization algorithm. The accuracy of the proposed model is verified by comparing …it with classical models on six data sequences with different forms. Finally, the model is applied to predict the electricity consumption of Beijing and Liaoning Province of China, and the results show that the model has a better prediction performance compared with the other four commonly-used grey models. To the best of our knowledge, this is the first time that the variable-order fractional accumulation is introduced into the discrete grey model, which greatly increases the prediction accuracy of the DGM(1,1) and extends the application range of grey models. Show more
Keywords: Grey model, variable-order fractional accumulation, whale optimization algorithm, electricity consumption
DOI: 10.3233/JIFS-210871
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3509-3522, 2021
Authors: Li, Shuhao | Sun, Qiang | Liu, Shupei
Article Type: Research Article
Abstract: In recent years, supply chain risk management has been followed with interest due to the short life cycle of products. How to identify risk indicators can help evaluate risks on supply chains. Commonly adopted methods such as Fuzzy to determine the level of risks have limitations. In this paper, a framework of supply chain risk evaluation is first proposed and risk indicators are identified by theoretical surveys from 35 keywords and empirical analysis from 448 questionnaires. Moreover, both linguistic risk assessment model and Cloud model are used to evaluate risks of supply chain. The Cloud model evaluation results are between …general risk and high risk but closer to high risk. In addition, Cloud expected value of risk is 6.54 which is within the high-risk range, and evaluation results are also high risk. It is shown that when the weights are the same, the cloud model can determine the priority of risk indicators, and reflect volatility and randomness comparing with other evaluation methods. Show more
Keywords: Cloud model, supply chain risk management, word frequency, risk identification, risk evaluation
DOI: 10.3233/JIFS-210883
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3523-3540, 2021
Authors: Chen, Xinghao | Zhou, Bin
Article Type: Research Article
Abstract: Path planning is the basis and prerequisite for unmanned aerial vehicle (UAV) to perform tasks, and it is important to achieve precise location in path planning. This paper focuses on solving the UAV path planning problem under the constraint of system positioning error. Some nodes can re-initiate the accumulated flight error to zero and this type of scenario can be modeled as the resource-constrained shortest path problem with re-initialization (RCSPP-R). The additional re-initiation conditions expand the set of viable paths for the original constrained shortest path problem and increasing the search cost. To solve the problem, an effective preprocessing method …is proposed to reduce the network nodes. At the same time, a relaxed pruning strategy is introduced into the traditional Pulse algorithm to reduce the search space and avoid more redundant calculations on unfavorable scalable nodes by the proposed heuristic search strategy. To evaluate the accuracy and effectiveness of the proposed algorithm, some numerical experiments were carried out. The results indicate that the three strategies can reduce the search space by 99%, 97% and 80%, respectively, and in the case of a large network, the heuristic algorithm combining the three strategies can improve the efficiency by an average of 80% compared to some classical solution. Show more
Keywords: UAV path planing, constraints shortest paths, resource re-initialized, pulse algorithm, heuristics
DOI: 10.3233/JIFS-210901
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3541-3553, 2021
Authors: Farag, Hania H. | Said, Lamiaa A. A. | Rizk, Mohamed R. M. | Ahmed, Magdy Abd ElAzim
Article Type: Research Article
Abstract: COVID-19 has been considered as a global pandemic. Recently, researchers are using deep learning networks for medical diseases’ diagnosis. Some of these researches focuses on optimizing deep learning neural networks for enhancing the network accuracy. Optimizing the Convolutional Neural Network includes testing various networks which are obtained through manually configuring their hyperparameters, then the configuration with the highest accuracy is implemented. Each time a different database is used, a different combination of the hyperparameters is required. This paper introduces two COVID-19 diagnosing systems using both Residual Network and Xception Network optimized by random search in the purpose of finding optimal …models that give better diagnosis rates for COVID-19. The proposed systems showed that hyperparameters tuning for the ResNet and the Xception Net using random search optimization give more accurate results than other techniques with accuracies 99.27536% and 100 % respectively. We can conclude that hyperparameters tuning using random search optimization for either the tuned Residual Network or the tuned Xception Network gives better accuracies than other techniques diagnosing COVID-19. Show more
Keywords: Convolutional neural network, hyperparameter, residual network, xception network, random search optimization
DOI: 10.3233/JIFS-210925
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3555-3571, 2021
Authors: Song, Qinyu | Ni, Yaodong | Ralescu, Dan
Article Type: Research Article
Abstract: The customer demands of various products bring a challenge for manufacturers. They have to design customized products while maintaining economies of scale and low costs. In this paper, to address this challenge, four approaches are argued to help companies find out the optimal solutions of products’ performance and the maximum profit: (i) only platform modularity without component sharing (ii) only component sharing without platform modularity, (iii) using both platform modularity and component sharing to develop products, or iv) the products are developed individually from a given unshared components set. A theoretical model is proposed and the most profitable approach is …found to develop a whole new product family when uncertainty exists in the customer demand and economies of scale with pre-defined parameters. We find that, when consumers’ valuation is considered, the manufacturer may prefer to adopt platform or component sharing individually rather than combining them because the performance of high-end products using platform and component sharing strategies is worse than that using two strategies separately. If platform and component sharing are adopted, the high-end product is under designed, but the manufacturer can benefit from economies of scale. When economies of scale of the platform are greater than or equal to that of component sharing, the optimal performance level of low-end products under platform strategy is lower than that under component sharing strategy. Finally, the detailed numerical analysis provides support for the feasibility and effectiveness of the model. Show more
Keywords: Platform, component sharing, uncertainty theory
DOI: 10.3233/JIFS-210957
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3573-3589, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]