Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Review Article
Authors: Seil, Fredrick J.
Affiliations: Office of Regeneration Research Programs, VA Medical Center and Department of Neurology, Oregon Health Sciences University, Portland, OR 97201 (U.S.A.)
Note: [] Correspondence: F.J. Seil, Office of Regeneration Research Programs (151N), VA Medical Center, Portland, OR 97201, U.S.A.
Abstract: Exposure of cerebellar cultures derived from neonatal mice to cytosine arabinoside for the first 5 days in vitro results in destruction of cerebellar granule cells and inhibition of glial maturation. Such cultures undergo reorganizational changes, primary features of which are a sprouting of Purkinje cell recurrent axon collaterals and the formation of recurrent axon collateral-Purkinje cell dendritic spine synapses. Such heterotypical synapses are inhibitory, in contrast to the excitatory parallel fiber-Purkinje cell dendritic spine synapses normally present. If locus coeruleus neurons are included with the cerebellar cultures, the catecholaminergic axons also sprout, and tissue levels of catecholamines are increased. Purkinje cell survival is enhanced in Ara C-treated cultures, as the target field for Purkinje cell axonal projections is expanded. Oligodendrocyte inhibition results in failure of myelination, and astrocyte inhibition, when it occurs, is associated with a failure of Purkinje cell ensheathment and a hypennnervation of Purkinje cell somata by sprouted recurrent axon collateral terminals. Transplantation of such cultures with granule cells and glia reverses many of these changes. Parallel fiber-Purkinje cell dendritic spine synapses are formed, and most heterotypical synapses disappear. The Purkinje cell population is reduced to normal, and most of the sprouted recurrent axon collaterals are eliminated. However, sprouted catecholaminergic axons are not significantly reduced. Transplanted cultures become myelinated and Purkinje cells acquire astrocytic sheaths, with an associated reduction of axosomatic synapses. Transplantation with glia alone does not reduce the sprouted recurrent axon collaterals, but does result in astrocytic ensheathment of Purkinje cells and an associated decrease of axosomatic synapses. These tissue culture models illustrate some of the plastic changes that the nervous system may undergo following injury and transplantation.
Keywords: Axonal sprouting, Catecholamine, Cerebellar culture, Cytosine arabinoside, Glial inhibition, Heterotypical synapse, Neural plasticity, Transplantation
DOI: 10.3233/RNN-1989-1101
Journal: Restorative Neurology and Neuroscience, vol. 1, no. 1, pp. 1-11, 1989
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]