Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Axonal Regeneraton and Repair of the central Nervous System
Article type: Research Article
Authors: White, Robin E.; | Jakeman, Lyn B.; ;
Affiliations: Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA | Neuroscience Graduate Studies Program, The Ohio State University, Columbus, OH, USA | The Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA
Note: [] a
Abstract: Astrocytes comprise a heterogeneous cell population that plays a complex role in repair after spinal cord injury. Reactive astrocytes are major contributors to the glial scar that is a physical and chemical barrier to axonal regeneration. Yet, consistent with a supportive role in development, astrocytes secrete neurotrophic factors and protect neurons and glia spared by the injury. In development and after injury, local cues are modulators of astrocyte phenotype and function. When multipotent cells are transplanted into the injured spinal cord, they differentiate into astrocytes and other glial cells as opposed to neurons, which is commonly viewed as a challenge to be overcome in developing stem cell technology. However, several examples show that astrocytes provide support and guidance for axonal growth and aid in improving functional recovery after spinal cord injury. Notably, transplantation of astrocytes of a developmentally immature phenotype promotes tissue sparing and axonal regeneration. Furthermore, interventions that enhance endogenous astrocyte migration or reinvasion of the injury site result in greater axonal growth. These studies demonstrate that astrocytes are dynamic, diverse cells that have the capacity to promote axon growth after injury. The ability of astrocytes to be supportive of recovery should be exploited in devising regenerative strategies.
Keywords: Astrocyte, spinal cord injury, cell transplantation, glia, development, regeneration
Journal: Restorative Neurology and Neuroscience, vol. 26, no. 2-3, pp. 197-214, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]