Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Urrea, Carlos | Castellanos, Daniel A. | Sagen, Jacqueline | Tsoulfas, Pantelis | Bramlett, Helen M. | Dietrich, W. Dalton
Affiliations: Department of Neurological Surgery, Neurotrauma Research Center, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, Florida, USA
Note: [] Corresponding author: W. Dalton Dietrich, Ph.D., University of Miami Miller School of Medicine, Dept. of Neurological Surgery, 1095 NW 14th Terrace, LPLC 2-23, Miami, FL 33136, USA. Tel.: +1 305 243 2297; Fax: +1 305 243 3207; E-mail: [email protected]
Abstract: Purpose: A proliferation of stem/progenitor cells is observed after brain injury. We examined the regional and temporal profile of mitotically active cells to determine whether traumatic brain injury (TBI) would increase neurogenesis in selective brain regions. Methods: Male Sprague-Dawley rats received injections (IP) of 5-bromo-deoxyuridine (BrdU), a compound used to detect mitotic cells, before and after fluid-percussion brain injury. At 3 hr, 1, 2, 3, 7, and 14 days after moderate fluid percussion, brains were processed for immunocytochemical and confocal analysis. Sections were double-labeled for markers selective for neurons (NeuN), astrocytes (GFAP), olidgodendrocytes (CNPase and MBP) and macrophage/microglia (ED1). Results: At 3 hr post-trauma, the majority of BrdU labeled cells were associated with the subventricular zone of the traumatized hemisphere. At later time points, a significant increase in BrdU positive cells was observed throughout the traumatized cerebral cortex, hippocampus, white matter structures, and some contralateral regions. BrdU labeled cells were observed as late as 14 days post-injury. Double-label studies with confocal microscopy demonstrated that cell phenotypes including astrocytes, macrophage/microglia, oligodendrocytes, and neurons were BrdU positive with the majority of cells appearing glial in nature. Evidence for neurogenesis was seen in the granular cell layer of the hippocampus. Conclusion: These findings indicate that TBI stimulates widespread cellular proliferation for days after injury and results in focal neurogenesis in the dentate gyrus of the hippocampus. These cellular responses to injury may participate in brain repair and functional recovery.
Keywords: Neurogenesis, dentate granular neurons, trauma, subventricular zone, plasticity
Journal: Restorative Neurology and Neuroscience, vol. 25, no. 1, pp. 65-76, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]