Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kanthasamy, Anumantha G.; | Tith, Tevy | Nguyen, Bang | Tran, Amy | Truong, Daniel D.
Affiliations: Parkinson's and Movement Disorders Institute, Long Beach Memorial Medical Center, Long Beach, CA 90801-1428, USA | Department of Neurology, and Community & Environmental Medicine, University of California Irvine, Irvine, CA, USA
Note: [] Corresponding author: A.G. Kanthasamy, Research Administration Building, Parkinson's and Movement Disorders Institute, Long Beach Memorial Medical Center, Long Beach, CA 90801-1428, USA. Tel.: +1 562 427 1834; Fax: +1 562 490 3738; E-mail: [email protected]
Abstract: A major consequence of severe cardiac arrest is impairment of neurological functions. Posthypoxic myoclonus and seizures are two of the major neurological problems following ischemic and hypoxic insults. This condition affects motor function to different degrees of severity ranging from mild to serious debilitation. The pathophysiological mechanism(s) associated with these neurological conditions remain elusive. Glutamate-mediated neuronal overexcitation is thought to play a major role in the neuronal damage and in the neurological consequences of the posthypoxic state. Therefore, lamotrigine, a new anticonvulsant that indirectly modulates glutamatergic neurotransmission by interfering with voltage-dependent sodium channels, was tested for its effectiveness in controlling the neurological and histopathological changes in the animal model of cardiac arrest-induced myoclonus. Lamotrigine dose-dependently attenuated the audiogenic seizures and action myoclonus seen in this rat model. Histological analysis using Nissl staining and the novel Fluoro-Jade histochemistry in cardiac-arrested rats showed an extensive neuronal degeneration in the hippocampus and cerebellum. Lamotrigine treatment significantly attenuated the neuronal degeneration in these brain areas. The neuroprotective effect was more pronounced in hippocampal pyramidal and cerebellar Purkinje neurons. The therapeutic window of lamotrigine in this model was 8 hours. These results suggest that lamotrigine can be viewed as a potential antimyoclonic and neuroprotective agent for the treatment of posthypoxic myoclonus and seizures. The study also suggests that neuronal hyperexcitability may play a role in the etiology of posthypoxic myoclonus and seizure.
Keywords: myoclonus, Na+ channel, global ischemia, motor function, seizure, neuroprotection
Journal: Restorative Neurology and Neuroscience, vol. 15, no. 1, pp. 45-56, 1999
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]