Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Grant, J.W.; * | Cotton, J.R.
Affiliations: Engineering Science and Mechanics Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
Note: [*] Reprint address: Dr. J.W. Grant, Engineering Science and Mechanics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0219.
Abstract: The otolith organs were modeled mathematically as a 3-element system consisting of a viscous endolymph fluid in contact with a rigid otoconial layer that is attached to the skull by a gel layer. The gel layer was considered to be a viscoelastic solid, and was modeled as a simple Kelvin material. The governing differential equations of motion were derived and nondimensionalized, yielding 3 nondimensional parameters: nondimensional density, nondimensional viscosity, and nondimensional elasticity. The equations were solved using finite difference techniques on a digital computer. By comparing the model’s response with previous experimental research, values for the nondimensional parameters were found. The results indicate that the inclusion of viscous and elastic effects in the gel layer are necessary for the model to produce otoconial layer deflections that are consistent with physiologic displacements. Future experimental data analysis and mathematical modeling effects should include viscoelastic gel layer effects, as this is a major contributor to system damping and response.
Keywords: otolith, viscoelastic, gel layer, distributed parameter model, dynamic response
DOI: 10.3233/VES-1991-1205
Journal: Journal of Vestibular Research, vol. 1, no. 2, pp. 139-151, 1991
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]