Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Nam, J.-H. | Cotton, J.R.; * | Grant, J.W.
Affiliations: Department of Engineering Science and Mechanics, and School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
Correspondence: [*] Corresponding author: John R. Cotton. Tel.: +1 540 231 7979; Fax: +1 540 231 4574; E-mail: [email protected]
Abstract: A dynamic 3-D hair bundle model including inertia and viscous fluid drag effects based on the finite element method is presented. Six structural components are used to construct the hair bundle – kinocilium, stereocilia, upper lateral links, shaft links, tip links, and kinocilial links. Fluid drag is distributed on the surface of cilia columns. Bundle mechanics are analyzed under two distinct loading conditions: (1) drag caused by the shear flow of the surrounding endolymph fluid (fluid-forced), (2) a single force applied to the tip of the kinocilium (point-forced). A striolar and a medial extrastriolar vestibular hair cell from the utricle of a turtle are simulated. The striolar cell bundle shows a clear difference in tip link tension profile between fluid-forced and point-forced cases. When the striolar cell is fluid forced, it shows more evenly distributed tip link tensions and is far more sensitive, responding like an on/off switch. The extrastriolar cell does not show noticeable differences between the forcing types. For both forcing conditions, the extrastriolar cell responds serially – the nearest tip links to the kinocilium get tensed first, then the tension propagates to the farther tip links.
Keywords: Hair cell, tip link, fluid drag, finite element model
DOI: 10.3233/VES-2005-155-604
Journal: Journal of Vestibular Research, vol. 15, no. 5-6, pp. 263-278, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]