Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Memorial Issue dedicated to Oguz K. Baskurt
Article type: Review Article
Authors: Cooke, Brian M.; | Stuart, John | Nash, Gerard B.
Affiliations: Department of Microbiology, Monash University, Victoria, Australia | Centre for Cardiovascular Sciences, School of Clinical and Experimental Medicine, College of Medical and Dental Science, University of Birmingham, UK
Note: [] Address for correspondence: Professor Brian M. Cooke, Department of Microbiology, Monash University, Victoria 3800, Australia. Tel.: +61 3 9902 9146; Fax: +61 3 9902 9222; E-mail: [email protected]
Abstract: During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export a number of proteins beyond the confines of their own plasma membrane where they associate with the RBC membrane skeleton. Here they participate in protein–protein interactions with both RBC proteins and other parasite proteins and assemble into complex multi-component structures known as knobs. These interactions cause profound changes to the rheological properties of RBCs, particularly increased cell resistance to deformation and increased adhesiveness, which underpin the severe and often fatal clinical manifestations of falciparum malaria. Here, we bring together recent insights that have been made into understanding the molecular mechanisms that underlie these parasite-induced alterations to RBCs. We describe some of the well-established methods that have been used to quantify the altered rheological properties of parasitized RBCs (PRBCs) and discuss emerging techniques that have already begun to advance our knowledge of the molecular basis of this important human disease. Finally, we suggest potential new avenues for rheological anti-malaria therapy.
Keywords: Red blood cell, plasmodium, cell mechanics, adhesion
DOI: 10.3233/BIR-140654
Journal: Biorheology, vol. 51, no. 2-3, pp. 99-119, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]