Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hu, Feng; | Zha, Daogang; | Du, Rongsheng | Chen, Xianghui | Zhou, Bingjie | Xiu, Jiancheng | Bin, Jianping | Liu, Yili
Affiliations: Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China | Department of Cardiology, First People's Hospital of Yangzhou, the Second Clinical Medical School of Yangzhou University, Yangzhou, China
Note: [] Address for correspondence: Dr. Daogang Zha, Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China. Tel.: +86 20 6278 7390; Fax: +86 20 6136 0416; E-mail: [email protected].
Abstract: Drag-reducing polymers (DRPs) are blood-soluble macromolecules that can increase blood flow and reduce vascular resistance. The purpose of the present study is to examine the effects of DRPs on microcirculation in rat hind limb during acute femoral artery occlusion. Two groups of 20 male Wistar rats were subjected to either hemodynamic measurement or contrast enhanced ultrasound (CEU) imaging during peripheral ischemia. Both groups were further subdivided into a DRP-treated group or a saline-treated group. Polyethylene oxide (PEO) was chosen as the test DRP, and rats were injected with either 10 ppm PEO solution or saline through the caudal vein at a constant rate of 5 ml/h for 20 min. Abdominal aortic flow, iliac artery pressure, iliac vein pressure, heart rate, carotid artery pressure and central venous pressure (CVP) were monitored, and vascular resistance was calculated by (iliac artery pressure−iliac vein pressure)/abdominal aortic blood flow. Flow perfusion and capillary volume of skeletal muscle were measured by CEU. During PEO infusion, abdominal aortic blood flow increased (p<0.001) and vascular resistance decreased (p<0.001) compared to rats that received saline during peripheral ischemia. There was no significant change in ischemic skeletal capillary volume (A) with DRP treatment (p>0.05), but red blood cell velocity (β) and capillary blood flow (A×β) increased significantly (p<0.05) during PEO infusion. In addition, A, β and A×β all increased (p<0.05) in the contralateral hind limb muscle. In contrast, PEO had no significant influence on heart rate, mean carotid artery blood pressure or CVP. Intravenous infusion of drag reducing polymers may offer a novel hydrodynamic approach for improving microcirculation during acute peripheral ischemia.
Keywords: Drag-reducing polymers, microcirculation, acute limb ischemia, contrast-enhanced ultrasound
DOI: 10.3233/BIR-2011-0592
Journal: Biorheology, vol. 48, no. 3-4, pp. 149-159, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]