Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Tickner, E. Glenn | Sacks, Alvin H.
Affiliations: Bioengineering and Physiology Division, Palo Alto Medical Research Foundation, 860 Bryant Street, Palo Alto, California 94301
Note: [1] Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR contract number F44620-67-C-0054.
Abstract: Model experiments were conducted in which a suspension of rigid spherical particles of neutral buoyancy in a highly viscous Newtonian fluid was passed through simulated idealized stenoses in a rigid tube under a steady pressure gradient. The ranges of Reynolds numbers (0.3–50), ratio of orifice diameter to tube diameter (1/4–3/4), and particle concentration (0–44 per cent) were selected to compare with values found in the living system. It was found that the pressure drops across the stenoses exceeded the theoretical values somewhat, even with no particles present. The pressure drop increased systematically with particle concentration until particle flow through the stenosis ceased. The flow rate then diminished rapidly as particles accumulated on the upstream side. A Venturi-type stenosis produced considerably higher pressure drops than a corresponding orifice at the same flow rate. However, the Venturi-type stenosis permitted flows with higher particle concentration without plugging. So long as no plugging occurred, it was found that the increase in pressure drop with particle concentration agreed favorably with existing theory if one considers the suspension as a continuum of increased viscosity.
DOI: 10.3233/BIR-1968-5404
Journal: Biorheology, vol. 5, no. 4, pp. 275-283, 1968
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]