Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected papers of the 4th International Symposium on Mechanobiology of Cartilage and Chondrocyte, Budapest, 20–22 May, 2006
Article type: Research Article
Authors: Nugent, G.E. | Schmidt, T.A. | Schumacher, B.L. | Voegtline, M.S. | Bae, W.C. | Jadin, K.D. | Sah, R.L.; ;
Affiliations: Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA | Whitaker Institute of Biomedical Engineering, University of California, San Diego, La Jolla, CA, USA
Note: [] Address for correspondence: Dr. Robert L. Sah, Department of Bioengineering, Mail Code 0412, 9500 Gilman Dr., La Jolla, CA 92093-0412, USA. Tel.: +1 858 534 0821; Fax: +1 858 822 1614; E-mail: [email protected].
Abstract: The boundary lubrication function of articular cartilage is mediated in part by molecules at the articular surface and in synovial fluid, encoded by Prg4. The objective of this study was to determine whether static and dynamic compression regulate PRG4 biosynthesis by cartilage explants. Articular cartilage disks were harvested to include the articular surface from immature bovines. Some disks were subjected to 24 h (day 1) of loading, followed by 72 h (days 2–4) of free-swelling culture to assess chondrocyte responses following unloading. Loading consisted of 6 or 100 kPa of static compression, with or without superimposed dynamic compression (10 or 300 kPa peak amplitude, 0.01 Hz). Other disks were cultured free-swelling as controls. PRG4 secretion into culture medium was inhibited by all compression protocols during day 1. Following unloading, cartilage previously subjected to dynamic compression to 300 kPa exhibited a rebound effect, secreting more PRG4 than did controls, while cartilage previously subjected to 100 kPa static loading secreted less PRG4. Immunohistochemistry revealed that all compression protocols also affected the number of cells expressing PRG4. The paradigm that mechanical stimuli regulate biosynthesis in cartilage appears operative not only for load bearing matrix constituents, but also for PRG4 molecules mediating lubrication.
Keywords: Mechanobiology, chondrocyte, PRG4, lubrication
Journal: Biorheology, vol. 43, no. 3-4, pp. 191-200, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]