Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kerrigan, Mark J.P. | Hall, Andrew C.
Affiliations: School of Biomedical and Clinical Laboratory Science, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
Note: [] Present address: Department of Human and Health Science, School of Bioscience, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
Note: [] Address for correspondence: Andrew C. Hall, School of Biomedical and Clinical Laboratory Science, Hugh Robson Building, George Square, Edinburg EH8 9XD, UK. Tel.: +44 131 650 3263; Fax: +44 131 650 6527; E-mail: [email protected].
Abstract: Articular chondrocytes are exposed to significant changes in extracellular osmolarity during normal joint activity, which can lead to changes in cell volume and metabolism of the extracellular matrix (ECM). Chondrocytes can respond to cell swelling/shrinking by volume regulatory pathways, but the signalling pathways are poorly understood although a role for the cytoskeleton is frequently implicated. Here, we have investigated the effects of disruption of the chondrocyte F-actin cytoskeleton on the recovery of cell volume by RVD. The cytoskeleton was perturbed using the relatively specific agent latrunculin B (5 μM; 30 min) and loss of F-actin integrity quantified using fluorescent phalloidin-labelling and confocal laser scanning microscopy (CLSM). Imaging of isolated chondrocytes labelled with Fura-2 to measure the fluorescence associated with cell volume changes, showed that the extent of hypo-osmotic swelling was unaffected by latrunculin B treatment. Two categories of the chondrocyte RVD response were observed: ‘fast’ RVD where at 3 min post-osmotic challenge there was a recovery in cell fluorescence of ≥80%, whereas other cells exhibited ‘slow’ RVD. Latrunculin B increased the proportion of chondrocytes demonstrating ‘fast’ RVD by ∼10 fold and reduced those cells showing ‘slow’ RVD. An inhibitor of chondrocyte RVD (REV 5901) had no significant effect on the integrity of the cytoskeleton showing that the RVD response could be inhibited independent of the state of the F-actin cytoskeleton. These results suggest that the intact cortical F-actin cytoskeleton has a restraining effect on the RVD response of isolated bovine articular chondrocytes.
Keywords: Articular chondrocyte, volume regulation, cytoskeleton, fluorescence, mechanotransduction
Journal: Biorheology, vol. 42, no. 4, pp. 283-293, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]