Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Thoumine, Olivier; * | Ott, Albrecht
Affiliations: Laboratoire de Physicochimie Curie, UMR 168 du CNRS, Section de recherche, Institut Curie, Paris, France
Note: [*] Reprint requests to: Olivier Thoumine, Laboratoire de Genie Medical, PSE-Ecublens E.P.F.L., 1015 Lausanne, Switzerland; Fax: +41 21 6938330; E-mail: [email protected]
Abstract: In order to achieve coordinated migration through extracellular matrix and endothelial barriers during metastasis, cancer cells must be endowed with specific structural and adhesive properties. In this context, comparison of the mechanical properties of transformed versus normal cells, on which little quantitative information is available, was the focus of this study. Normal human dermal fibroblasts and their SV40-transformed counterparts were analyzed using various manipulations. First, micropipet aspiration of suspended cells allowed calculation of a cortical tension (similar for normal and transformed cells), and an apparent viscosity (30% lower for transformed than for normal fibroblasts); in addition, transformed fibroblasts exhibited a more fragile surface than their normal counterparts. Second, tangential ultracentrifugation of adherent cells demonstrated cellular elongation in the direction of the centrifu al field and the existence of critical forces for cell detachment, around 10−7 N: these were 1.6-fold greater for normal than for transformed cells. Finally, examination of the wrinkle patterns formed by cells plated on a deformable polydimethylsiloxane substrate, plus analysis of cell retraction caused by ATP treatment following detergent permeabilization showed that normal fibroblasts exhibited much more contractility than their transformed counterparts, which we characterized by a cell contraction rate. Such quantitative parameters which reveal differences in the mechanical behavior of normal and transformed cells may be used in the future as new markers of oncogenic transformation.
Keywords: Micropipet, centrifugation, cell contraction, cytoskeleton, adhesion
DOI: 10.3233/BIR-1997-344-505
Journal: Biorheology, vol. 34, no. 4-5, pp. 309-326, 1997
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]