Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Prakash, B. | Singh, M.
Affiliations: Biomedical Engineering Division, Indian Institute of Technology, Madras, 600 036, Tamilnadu, India
Abstract: Based on the variation in the optical density due to erythrocyte concentration and movement, the axial tomographic and image velocimetry techniques are respectively applied to determine the flow field, i.e., the distribution of erythrocytes and axial and radial velocity components, in steady blood flow through a curved glass capillary with a diameter of 180 µm. The data at four positions (two straight and two curved segments of the capillary) are recorded by a video-microscopic system on a video cassette. The erythrocyte and velocity distribution profiles change from symmetric at the straight position to an asymmetric shape at the curved sections. These profiles become symmetric again at the straight section of the capillary. The increase in the radial velocity component at curved portions is attributed to the secondary flow. The tomograms obtained by concentration profiles show respective changes in the cellular population at various cross-sectional positions. The kinetic energy dissipation, as calculated based on a determination of the flow field, is the minimum for the observed profiles. Any deviation towards parabolic form leads to the dissipation of a higher amount of energy.
Keywords: Blood flow, glass capillary, curvature, tomography, image velocimetry, optimum energy
DOI: 10.3233/BIR-1996-33105
Journal: Biorheology, vol. 33, no. 1, pp. 59-74, 1996
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]