Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Agarwal, M.a | King, M.b | Shukla, J.B.c
Affiliations: [a] Pulmonary Defense Group, 173 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2S2 | [b] Department of Mathematics, Lucknow University, Lucknow, India | [c] Department of Mathematics, Indian Institute of Technology, Kanpur, India
Abstract: Under some conditions, such as inhalation injury, an array of longitudinal channels without cilia may be formed on the epithelial surface, affecting mucus transport in the lung during coughing. Moreover, in certain cases of the diseased state of the lung, immotile cilia remain embedded in the serous fluid and may form channels in the direction of air motion during coughing, providing a resistance-free pathway for serous layer fluid and assist in mucus clearance. To understand this phenomenon, we have conducted experiments with mucous gel simulants (MGS) in a simulated cough machine (SCM) using soap solution as a serous layer simulant (SLS). The channel structure of the airway surface was modeled by introducing bottom plates with longitudinal grooves about 10 cm long having different depths, widths and number of grooves. It was shown that mucous gel transport increases as the cross-sectional area occupied by channel grooves increases. The effects of sinusoidal constriction and mucous gel filance were also investigated in this model system. It was found that mucous gel transport increases in the constricted case (minimum gap, 3 mm, and maximum gap, 9 mm) in comparison with that in the parallel case (constriction gap of 9 mm). The effect of increasing the mucous gel filance was to decrease the transport as reported in previous studies.
Keywords: Cough clearance, mucus, cilia, serous fluid, primary ciliary dyskinesia
DOI: 10.3233/BIR-1994-31102
Journal: Biorheology, vol. 31, no. 1, pp. 11-19, 1994
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]