Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Norton, James M.
Affiliations: University of New England, College of osteopathic Medicine, Biddeford, ME 04005
Note: [] Accepted by: Editor G.W. Schmid-Schönbein
Abstract: To investigate the role of red blood cell (RBC) geometry in determining the filterability of stress-induced macrocytes, measurements of RBC volume, diameter, and passage time through 3 micron and 5 micron filters were made on RBCs from control rats and from phenylhydrazine-treated rats during a 28-day recovery period following the peak hemolytic response to the anemia induced by phenylhydrazine (PHZ). Mean cell volumes (MCV) were calculated from volume distribution curves; RBC diameters were obtained from peripheral blood smears; surface area (SA) and mean cylindrical diameter (MCD) were calculated using a biconcave erythrocyte model. At the time of the peak macroreticulocyte response to PHZ, MCD and MCV were significantly increased compared to controls (3.07 vs 2.57 microns, and 102.1 vs 59.7 cubic microns, respectively), the ratio SA/MCV was significantly reduced (1.405 vs 1.670), and RBC filterability through both 3 and 5 micron cylindrical pores was significantly reduced. During the 28-day recovery period, MCV, MCD, SA/MCV, and filterability all returned toward the control values, MCD was inversely correlated with filterability through both 3 micron (r = -0.861, p < .01) and 5 micron (r = -0.767, p < .01) pores, and MCD fell below 3.6 microns in 97.5% of the animals despite the persistence of large macrocytic subpopulations. These results emphasize the correlation between RBC geometry and filterability, and demonstrate that macrocytes with favorable geometry can persist in the circulation for extended periods without remodeling or reduction in size.
Keywords: erythrocyte deformability, erythrocyte volume, macrocytosis, reticulocytes, anemia
DOI: 10.3233/BIR-1990-27103
Journal: Biorheology, vol. 27, no. 1, pp. 21-37, 1990
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]