Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chaturani, P. | Mahajan, S.P.
Affiliations: Dept. of Mathematics and Dept. of Chemical Engineering, Indian Institute of Technology, Bombay 400 076, India
Note: [] Accepted by: Editor J.C. Healy
Abstract: Poiseuille flow of a micropolar fluid has been reexamined from the point of view of its applications to blood flow. Couple stresses are assumed to be non-zero at the boundary, and a method has been proposed to determine such boundary conditions for a given suspension. Velocity profiles (both axial and rotational) as well as apparent viscosity have been computed for various values of s¯ (a boundary condition and concentration parameter). The results obtained have been compared with experimental values (for blood flow). It is found that they are in a reasonably good agreement. Some of the earlier workers have used solvent viscosity for the classical shear viscosity of the suspension and obtained infinite relative viscosity for a suspension concentration of 40 % which, according to experimental results, is not feasible. An appropriate expression for the classical shear viscosity has been used in the present analysis which removes the apparent viscosity anomaly, i.e., apparent viscosity tends to infinity as the concentration approaches 40 %, from the micropolar fluid theory. Finally, some biological applications of this theory have been discussed.
Keywords: Blood viscosity, erythrocyte spin, rheology, velocity profiles
DOI: 10.3233/BIR-1982-19403
Journal: Biorheology, vol. 19, no. 4, pp. 507-518, 1982
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]