Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Perspectives in Biorheology. Festschrift for A.L. Copley
Guest editors: Alexander Silberberg
Article type: Research Article
Authors: Kuroda, K.a | Kamiya, N.b
Affiliations: [a] Department of Biology, Faculty of Science, Osaka University, Toyonaka, Osaka, 560, Japan | [b] Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444, Japan
Note: [1] This paper is dedicated to Professor A.L. Copley for the celebration of his seventieth birthday.
Note: [] Invited by: Editor A. Silberberg
Abstract: Using the prototype of newly developed centrifuge-microscope loaded with a video camera to produce an unflickering image, we observed the behavior of cytoplasmic streaming in the young internodal cell of Nitella axilliformis during centrifugation. At 1500 rpm (250×g) the majority of the flowing endoplasm collected at the centrifugal end of the cell, when the boundary between the accumulated endoplasm and the cell sap was “horizontal” and flat. By slowing down the speed of rotation to 1000 rpm (110×g), a clearly recognizable streaming was started, in the form of a thin layer moving against the centrifugal force on one side of the cell; and the endoplasm-cell sap boundary became tilted as if dragged by the stream overcoming the centrifugal force. When centrifugation was stopped, normal streaming soon resumed. The process was perfectly reversible. Prevention of streaming by cytochalasin B was shown to be due to the loss of motive force, and not to the increase in viscosity or gelation of the endoplasm. The streaming velocity-centrifugal force relation is not linear, which is explained by the thinning of the endoplasmic layer during centrifugation. Changes in streaming velocity induced by moderate centrifugal accelerations enabled us to estimate the motive force responsible for the streaming. It was calculated to be about 1 dyn·cm−2, corresponding well with the data obtained by other methods.
Keywords: Cytoplasmic streaming, Nitella, centrifuge-microscope, television
DOI: 10.3233/BIR-1981-183-625
Journal: Biorheology, vol. 18, no. 3-6, pp. 633-641, 1981
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]