Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chaturani, P. | Upadhya, V.S.
Affiliations: Department of Mathematics, I.I.T., Bombay 400 076, India
Note: [] Accepted by: Editor M. Joly
Abstract: In the present analysis, a two-fluid model for blood flow through small diameter tubes has been studied. This model essentially consists of a core region (suspension of red cells, etc.), assumed to be a micropolar fluid, and a peripheral plasma layer (Newtonian fluid). It is proposed that the coefficient of Viscosity in the core region may be considered as the shear viscosity of blood. Using the boundary conditions proposed by Ariman et al. and Bugliarello and Sevilla, analytical expressions for flow velocity, cell rotational velocity and effective viscosity have been obtained. Variation of velocity profile shows that the results obtained are in better agreement with the experimental results. A critical study of Ariman et ale model and other existing two-fluids models has been presented. The values of effective viscosity for different tube diameters have been computed from Ariman et ale model and from the present model. On comparing, it is found that the results obtained from the present analysis exhibit Fahraeus-Lindquist effect, whereas the Ariman et al. model does not show this effect.
Keywords: Blood flow
DOI: 10.3233/BIR-1979-16606
Journal: Biorheology, vol. 16, no. 6, pp. 419-428, 1979
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]