Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kuntamukkula, M.S. | McIntire, L.V. | Natelson, E.A.
Affiliations: Biomedical Engineering Laboratory, Rice University, Houston, Texas 77001
Note: [] Accepted by: Editor E. Fukada
Abstract: Dynamic viscoelastic properties were determined during the progress of plasma coagulation using a Weissenberg Rheogoniometer. A simple kinetic model was employed to describe the network formation phase of coagulation following recalcification of normal plasma. Rheological data obtained with pathological plasma samples (with Factor VIII and Factor IX deficiencies) indicated a delay in the initiation of clot formation and a slower initial fibrin polymerization rate. The computed ‘rate constant’ gave significantly different values for normal and hemophilic plasma clotting systems. No change was found in the final maximum elastic modulus attained, indicating network formation, though slow, eventually was complete and the final structure was unaltered.
DOI: 10.3233/BIR-1979-16604
Journal: Biorheology, vol. 16, no. 6, pp. 403-410, 1979
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]