Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chaturani, P.
Affiliations: Department of Mathematics, Indian Institute of Technology, Bombay 400 076, India
Note: [1] Third International Congress of Biorheology
Note: [] Accepted by: Editor M. Joly
Abstract: Blood flow through narrow tubes has been studied by two theoretical models, viz., sigma phenomenon and marginal zone theory. The analysis for the latter model, developed by the author elsewhere, has been used to obtain the marginal zone thickness; the sigma phenomenon theory for the flow of couple stress fluid has been developed here. It is found that the marginal zone thickness ε and the thickness of the unsheared laminae δ are very complicated functions of tube radius. Therefore, to get some insight into their relation with tube radius, the approximate expressions of ε and δ have been obtained. These approximate expressions of ε and δ contain their corresponding expressions for Newtonian fluids, given by Haynes analysis, as their limiting cases. A comparison of the theoretically predicted numerical values of ε and δ, obtained from the present and Haynes analysis, with the experimental values shows that the results obtained by the present analysis are in better agreement with the experimental results than those obtained by Haynes analysis. In contrast to Haynes conclusion (ε and δ are independent of tube radius), it is found that both the analyses (present and Haynes) indicate the dependence of the value of ε and δ on the tube radius. Further, it appears that ε in comparison to δ is a weaker function of tube radius. It is of interest to note that the nature of the variation of ε with tube radius in experiments is opposite to the one obtained from both the analyses. The reasons for this discrepancy are not clear. Finally, some physiological implications of the present analysis have been cited.
Keywords: Blood flow
DOI: 10.3233/BIR-1979-16601
Journal: Biorheology, vol. 16, no. 6, pp. 377-386, 1979
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]