Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: 2nd International Symposium on Mechanobiology: Cartilage and Chondrocyte. Paris, France, April 2001
Article type: Research Article
Authors: Quinn, T.M.; ; | Schmid, P. | Hunziker, E.B. | Grodzinsky, A.J.;
Affiliations: Biomedical Engineering Laboratory, Swiss Federal Institute of Technology, Lausanne, Switzerland | Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA | M.E. Mueller Institute for Biomechanics, University of Bern, Switzerland
Note: [] Address for correspondence: Prof. A.J. Grodzinsky, MIT, Room 38‐377, Cambridge, MA 02139, USA. Tel.: +1 617 253 4969; Fax: +1 617 258 5239; E‐mail: [email protected].
Abstract: With a view towards the development of methods for cartilage tissue engineering, matrix deposition around individual chondrocytes was studied during de novo matrix synthesis in agarose suspension culture. At a range of times in culture from 2 days to 1 month (long enough for cartilage‐like material properties to begin to emerge), pericellular distributions of proteoglycan and matrix protein deposition were measured by quantitative autoradiography, while matrix accumulation and cell volumes were estimated by stereological methods. Consistent with previous work, tissue‐average rates of matrix synthesis generally decreased asymptotically with time in culture, as de novo matrix accumulated. Cell‐scale analysis revealed that this evolution was accompanied by a transition from predominantly pericellular matrix (within a few μm from the cell membrane) deposition early in culture towards proteoglycan and protein deposition patterns more similar to those observed in cartilage explants at later times. This finding may suggest a differential recruitment of different proteoglycan metabolic pools as matrix assembly progresses. Cell volumes increased with time in culture, suggestive of alterations in volume regulatory processes associated with changes in the microphysical environment. Results emphasize a pattern of de novo matrix construction which proceeds outward from the pericellular matrix in a progressive fashion. These findings provide cell‐scale insight into the mechanisms of assembly of matrix proteins and proteoglycans in de novo matrix, and may aid in the development of tissue engineering methods for cartilage repair.
Journal: Biorheology, vol. 39, no. 1-2, pp. 27-37, 2002
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]