Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Tsai, Amy G. | Intaglietta, Marcos
Affiliations: Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
Note: [] Address for correspondence: Amy G. Tsai, Ph.D., Associate Research Scientist of Bioengineering, Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093‐0412, USA. Tel.: +1 619 534 2315; Fax: +1 858 534 5722; E‐mail: [email protected].
Abstract: Hemorheological studies lead to the axiom that high plasma viscosity is detrimental and that it is beneficial to lower blood viscosity, a precept embodied in the practice of hemodilution, where improved perfusion is attributed to the lowering of blood viscosity. Hemodilution is limited by the transfusion trigger, hemoglobin content of blood of about 7–8 g/dl, which indicates when further volume replacements must restore oxygen carrying capacity with red blood cells (RBC). However, oxygen consumption and delivery are not compromised upon passing this landmark. The reduced blood viscosity does not transmit adequate pressure to the capillaries, causing functional capillary density (FCD) to decrease, jeopardizing organ function through the inadequate extraction of products of metabolism from the tissue by the capillaries. Studies in hemorrhagic shock show that survival is primarily determined by the maintenance of FCD and secondarily by tissue oxygenation. FCD is maintained as hematocrit is reduced beyond the transfusion trigger by increasing plasma viscosity, which transmits systemic pressure to the capillaries and induces vasodilatation through the increased shear stress dependent release of vasodilators. Consequently the transfusion trigger is also a “viscosity trigger” indicating when blood and plasma viscosity are too low. In this condition increasing plasma viscosity is beneficial and extends the transfusion trigger reducing the use of blood transfusions.
Keywords: Plasma viscosity, transfusion trigger, functional capillary density, hemodilution, high molecular weight dextrans, tissue survival, oxygen delivery
Journal: Biorheology, vol. 38, no. 2-3, pp. 229-237, 2001
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]