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Abstract.
BACKGROUND: A quantitative comfort model will aid in evaluating comfort levels of various target groups before the
actual flight of an airplane. However, constructing the model is always a challenge due to the complexity of the phenomenon.
OBJECTIVES: In this paper, we present quantitative comfort models to predict the (dis)comfort of passengers flying with
turboprops based on objective measures.
METHODS: Ninety-seven participants took part in two experiments conducted during real flights, during which forty of
them had environmental and personal factors recorded using (self-developed) measurement tools. The collected data were
analyzed to model the relations between objective measures and subjective feelings.
RESULTS: Two preliminary models based on gradient boosting regression were developed. The models were able to predict
the changes in comfort and discomfort of individual passengers with an accuracy of 0.12 ± 0.01 and 0.21 ± 0.01 regarding
normalized comfort and discomfort scores, respectively. Additionally, contributions of different factors were highlighted.
CONCLUSION: The outcomes of the models show that we took a step forward in modeling the human comfort experience
using objective measurements. Anthropometry (including age), seat positions, time duration, and row (noise) emerged as
leading factors influencing the feeling of (dis)comfort in turboprop planes.
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1. Introduction

In 2022, Clean Aviation announced its ambitious
target of decreasing aircraft greenhouse gas emis-
sions by no less than 30% by 2030, aiming at
climate-neutral aviation by 2050 [1]. While fuel,
propulsion systems, lightweight materials, and struc-
tures have attracted a lot of attention, the comfort of
passengers is another important factor for an environ-
mentally friendly and enjoyable journey [2].

∗Address for correspondence: Yu (Wolf) Song, Landbergstraat
15, 2628CE, Delft, The Netherlands. E-mail: y.song@tudelft.nl.

The subjective (dis)comfort feelings of passen-
gers involve complex constructs [3]. Researchers
have begun to interpret this phenomenon using a
series of qualitative models [3–8], and it has been
proposed that the factors influencing comfort can
be categorized as users’ backgrounds, the physi-
cal properties of their bodies, their expectations, the
(social) environment(s), the product(s) they are using,
the interactions between the users and the prod-
uct/environment, and the duration of the use [7].

Turboprop airplanes play a significant role in pro-
moting more sustainable aviation, as they consume
10–60% less fuel compared to regional jet flights
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[9]. However, turboprop passengers may experience
different levels of comfort compared to those in jet
aircraft. For instance, according to Bouwens et al.
[10], the comfort feelings of passengers in jet engine
airplanes depend on various factors such as seat-
ing, noise, lighting, temperature, vibrations, and odor,
ranked from high to low importance. On the other
hand, Vink et al. discovered that noise is the primary
contributor to discomfort in turboprop aircraft [11].
This is reflected in noise measurements showing that
the average cabin noise level in an Airbus A350 is
approximately 74.9 dB(A) [12], while in an ATR 72,
it can reach over 80 dB(A) [13]. Future generations
of turboprop aircraft need to provide a better comfort
experience to be widely accepted by passengers and
operated by airlines.

In interior design for the new generation of tur-
boprops, a quantitative model for passenger comfort
and discomfort is essential. This includes optimizing
space utilization and crafting ergonomic seat designs.
However, although the factors influencing comfort
are relatively clear, constructing a model for indi-
viduals in the cabin and highlighting the effects of
different parameters remains challenging due to the
complexity of the environment and the differences
among individuals. Among different modeling meth-
ods, (linear) regression models were often used to
describe collective passenger behavior [14]. Simi-
larly, structural equation models were used as well for
incorporating more factors [15]. For a better predic-
tion of individual (dis)comfort, data-driven methods,
e.g., machine learning, have been highlighted for
their ability to address various factors of complex
phenomena. For instance, Zhao et al. used data-
driven methods in modeling thermal comfort of users
[16], and an Improved Particle Swarm Algorithm
– Supported Vector Machine (IPSO-SVR) method
was used to predict comfort of pilot seats based on
pressure data [17]. However, when employing a data-
driven approach, the availability of a valid (large)
dataset specific to the target group is crucial.

In the European project COMFDEMO, we mod-
eled the (dis)comfort experience of passengers seated
in the turboprop aircraft cabin. This paper outlines the
experiment conducted for modeling, the data collec-
tion tools, and the modeling tool, and presents the ini-
tial comfort models for passengers. Cross-validation
results suggest the potential, along with a notable
degree of uncertainty, in using the model to predict
comfort levels of individuals based on objective mea-
sures of users, users’ background, the environment,
the products, as well as the duration of use.

2. Materials & methods

An experiment was carried out with two flights at
Rotterdam Airport, one in the morning and another
in the afternoon, each lasting about 70 minutes. The
ground temperature of the day in the airport was 12°C
and the relative humidity was approximately 78%
on the ground. The flights were conducted using an
ATR72-500 turboprop (Fig.1), with a (cruising) flight
altitude at 17,000 feet, and the cabin pressure was
around 900 hPa during the cruising stage [13].

2.1. Measurement tools

A series of tools were used to log environmental
and personal variables during the flight. For instance,
noise levels in different rows were documented using
a Bruel & Kjaer 2270 sound level meter positioned
in the middle of each row [13]. A wearable mea-
surement tool, called the Jacket, was developed to
gather data on passengers’ physical movements and
local environmental parameters [18]. Specifically, on
each side (left/right) of the trunk, the (contra)lateral,
superior/inferior, and anterior/posterior movements
of the shoulder and waist were measured by an
ADXL355 accelerometer and an Adafruit Preci-
sion IMU, respectively. CO2 levels, temperature, and
humidity were logged by an SCD30 sensor, and the

Fig. 1. Left: The ATR72-500 plane from Lubeck Air, Right: Participants on the way from the airport with Jacket.
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Fig. 2. An example of the 20 measurement Jackets.

light spectrum was recorded by an AS7262 sensor at
the right chest position. Twenty jackets in four differ-
ent sizes were manufactured, and Fig. 2 shows one of
them.

2.2. Participants

Among all participants on each of the two flights,
20 of them were chosen to wear the measurement
Jacket, resulting in a total of 40 datasets. The mean
age of the 40 participants is 35.15 ± 15.08 years
old, with a mean stature of 174.2 ± 8.6 cm. The
mean body weight is 74.0 ± 13.9 kg. In terms of
Sex distribution, there are 26 males and 14 females.
During recruitment, we utilized self-reporting [19]
as well as on-site measurement methods to mini-
mize the specificity of the population in relation to
key anthropometric measurements associated with
(dis)comfort. Figure 3 shows the distribution of hip-
breadth(width) regarding popliteal height of the forty
participants who wore the Jackets.

In the seating arrangement of these 40 participants,
the consortium shortlisted several options, including
random distributions. Based on the available num-
ber of Jackets and the cabin layouts of the specific
ATR72-500 turboprop, it was decided that a relatively
uniform distribution of Jackets across the left-right

and fore-aft directions in the cabin would be most
helpful in understanding the influence of environ-
mental parameters on the passengers. In the proposed
layouts, participants wore Jackets in Rows 3, 7, 11,
and 16 (Row 13 was unavailable on the plane). Fur-

thermore, participants occupying Seats 2 C, 5 C, 9 C,
and 14 C were also wearing Jackets, as illustrated
in Fig. 4. Among these 20 designated seats, partic-
ipants had the freedom to select their seat positions
according to their preferences.

2.3. Protocols

Upon signing the informed consent, participants
received a briefing about the procedure and selected
a Jacket that corresponded to their body size. Once
onboard the aircraft, they completed questionnaires
on various (dis)comfort aspects at different fly-
ing stages [20], including taxiing, takeoff/climbing,
cruising, descending, and taxiing after landing [21].

2.4. Data analysis methods

Objective measurement data gathered from var-
ious measurement tools underwent pre-processing.
Table 1 lists the category, specific measured param-
eters, measurement locations, and the correction
methods applied to the collected raw data.

Among all the data, data from Jacket No. 5 (Seat
2C), Jacket No. 10 (Seat 3D) in the morning, and
Jacket No. 9 (Seat 11C) and No. 18 (Seat 5C)
in the afternoon were missing, most likely due to
power management issues of the embedded system.
The slight variations in the starting times of the
jackets (1–2 minutes) were minimized by synchro-
nizing the CO2 concentration level peaks just before
engine start. Physical activities of the left/right shoul-
ders and left/right waists were extracted from the
four accelerometers and then pre-processed using the
sensor motion package [22] for the three axes, respec-
tively. CO2 concentration levels were corrected by
the pressure measured during our flights as reported
in Müller et al. [13] with the following Equations
where t is the timestamp of the records and COreading

2
is the original readings of the sensor.

CO
reading

2 t = 0 ∼ 480 Taxiing
CO

reading

2 *
(

1 + t−480
720 * (1/0.9–1)

)
t = 480 ∼ 1200s Takeoff/climbing

COcorrect
2 = CO

reading

2 * 1
0.9 t = 1200 ∼ 2580 s Cruising

CO
reading

2 *
(

1/0.9 − t−2580
600 * (1/0.9 − 1)

)
t = 2580 ∼ 3180 s Descending

CO
reading

2 t > 3180 s Taxiing

All measurement data were scaled to the range
of {0, 1} using the min–max scaler [23]. Con-
currently, the questionnaire data on comfort and
discomfort were normalized using the min–max
scaler as well. It is worth noting that through
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Fig. 3. The distribution of anthropometric measurements of the 40 participants.

Fig. 4. The location of Jackets (worn by participants) in the plane for both morning and afternoon flights. The number “13” was not used in
row numbers for this plane.

this process, the scores on comfort and discom-
fort were changed to reflect changes in comfort
and discomfort. Linear interpolation methods were
employed to sample all parameters and comfort
scores at 60-second intervals. Correlations between
each parameter and the (dis)comfort scores were
computed first to highlight important parameters.

Parameters with correlations to (dis)comfort (p < 0.1)
were selected as inputs for training two models,
establishing relations with comfort and discomfort
scores. The most significant contributors to com-
fort and discomfort were identified by assessing
their contributions using the permutation importance
method [24].
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Table 1
Data types and collection methods

Category Factors be measured Measurement location Correction methods

Time Time Each Jacket Synchronized by peak CO2 levels

Temperature &
Air quality

Temperature Each Jacket No
CO2 levels Each Jacket Corrected by equations
Humidity Each Jacket No

Vibroacoustic Sound pressure levels (SPLs) Aisle of each row No

Layout Row By seat 14 15 and 16 changed to 13, 14 and
15

Seat (A, C, D or F) By seat An extra virtual seat was inserted
between C and D to simulate the aisle

Flights Morning/ Afternoon By flight Changed to 0 or 1

Light intensity Red Each Jacket No
Orange Each Jacket No
Yellow Each Jacket No
Green Each Jacket No
Blue Each Jacket No

Violet Each Jacket No

Ergonomics Sex Measured before flight Changed to 0 or 1
Age Measured before flight No

Stature Measured before flight No
Body mass Measured before flight No

Popliteal height Measured before flight No
Buttock popliteal depth Measured before flight No

Hip width Measured before flight No

Physical Posture
changes/motion

Left shoulder Each Jacket Change to human physical activities
using the sensor motion package [22]Right shoulder Each Jacket

Left waist Each Jacket
Right waist Each Jacket

3. Results

Subjective and objective data collected from ques-
tionnaires and different measurement tools were
extracted and stored for later analysis. Figure 5
presents the measured noise levels across the turbo-
prop plane.

Table 2 displays all parameters along with p-
values of their correlations with (dis)comfort scores
over time. In total, 18 comfort and 16 discomfort
parameters exhibit significant correlations (p < 0.01).
To ensure that all (dis)comfort-related factors were

Fig. 5. Cabin noise levels, measured in the aisle, courtesy of [13].

included, a threshold of p = 0.1 was utilized to select
parameters for modeling the comfort experience. This
increases the number of parameters to 26 for comfort
and 19 for discomfort. We did not set any thresh-
olds for correlation values, as we anticipate nonlinear
relationships between objective measurements and
subjective feelings. Instead, we will identify the influ-
ence of factors using the models and the permutation
importance method.

The identified parameters were used as inputs for
two Gradient Boosting Regression models Gc and Gd

[25] where the comfort and discomfort scores were
used as the outputs as:

Comfort = Gc(P1 · · · P11, P13,P15 · · · P19, P21
· · · P23, P25 · · · P29, P33)

and
Discomfort = Gd (P1 · · · P3, P5 · · · P8, P10
· · · P12, P14,P15, P17, P24, P27, P28, P30 · · · P32

)

Here model, Gc is used to predict changes in
passengers’ comfort levels, and Gd for predict-
ing changes of discomfort levels. Both models
were trained using the collected 36 datasets and a
self-developed Python program. The 5-fold cross-
validation method was utilized to validate the
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Table 2
Parameters and their correlations with (dis)comfort

Parameters Parameter Correlations P value of Correlations with P value of
Index with comfort correlations discomfort correlations

with comfort with discomfort

Time P1#� –0.18 p < 0.01 0.07 p < 0.01
Row P2#� –0.14 p < 0.01 0.17 p < 0.01
Seat (A, C, D or F) P3#� 0.06 p < 0.01 0.3 p < 0.01
Morning or Afternoon P4# 0.05 p < 0.01 0.03 0.2
Gender P5#� –0.04 0.04 0.12 p < 0.01
Age P6#� 0.03 0.09 –0.16 p < 0.01
Stature P7#� 0.08 p < 0.01 0.05 p < 0.01
Body Mass P8#� 0.22 p < 0.01 0.16 p < 0.01
Popliteal height P9# 0.04 0.03 0.03 0.21
Buttock popliteal depth P10#� 0.13 p < 0.01 0.13 p < 0.01
Hip width P11#� 0.26 p < 0.01 0.13 p < 0.01
Noise P12� 0.01 0.73 0.14 p < 0.01
Right shoulder X-(contra) Lateral P13# –0.15 p < 0.01 0.02 0.23
Right shoulder Y-Anterior/Posterior P14� 0.01 0.76 –0.16 p < 0.01
Right shoulder Z-Superior/Inferior P15#� 0.07 p < 0.01 –0.04 0.03
Left shoulder X-(contra)Lateral P16# –0.16 p < 0.01 –0.03 0.11
Left shoulder Y-Anterior/Posterior P17#� –0.17 p < 0.01 –0.07 p < 0.01
Left shoulder Z- Superior /Inferior P18# 0.19 p < 0.01 –0.01 0.58
Right Waist X-(contra)Lateral P19# –0.04 0.04 0.03 0.19
Right Waist Y- Superior /Inferior P20 0.02 0.25 –0 0.82
Right Waist Z-Anterior/Posterior P21# –0.08 p < 0.01 –0.02 0.44
Left Waist X-(contra)Lateral P22# 0.07 p < 0.01 –0.01 0.77
Left Waist Y-Superior/Inferior P23# 0.05 0.02 –0.03 0.16
Left Waist Z-Anterior/Posterior P24� 0.02 0.26 –0.04 0.03
CO2 level P25# 0.07 p < 0.01 –0.03 0.11
Temperature P26# –0.05 0.02 –0.01 0.53
Humidity P27#� 0.22 p < 0.01 –0.12 p < 0.01
Red light intensity P28#� –0.05 0.01 0.03 0.09
Orange light intensity P29# –0.05 0.02 –0.03 0.18
Yellow light intensity P30� –0.01 0.62 –0.09 p < 0.01
Green light intensity P31� –0.02 0.25 –0.08 p < 0.01
Blue light intensity P32� –0.02 0.27 –0.07 p < 0.01
Violet intensity P33# –0.09 p < 0.01 0.02 0.26

*p-values in bold indicate that the parameter is selected. #Parameter is selected as a predictor of comfort. �Parameter is selected as a predictor
of discomfort.

accuracy of both models [26]. The results of cross
validation indicated that the root mean square errors
(RMSEs) of the model Gc for predicting changes
of comfort and Gd for changes of discomfort were
0.12 ± 0.01 and 0.21 ± 0.01, respectively. This sug-
gests that the RMSEs represent a variation of 12%
in comfort changes and 21% in discomfort changes,
considering that the (dis)comfort scores were normal-
ized using the min–max scaler within the domain of
{0, 1}.

Using both models and the permutation importance
method, we ranked the contributions of different
parameters concerning the models’ outputs. It was
found that for comfort, hip width was the most impor-
tant factor, followed by humidity, CO2 level, time,
temperature, age, buttock popliteal depth, and row
number, which was closely associated with noise lev-

els. Conversely, for discomfort, the prominent factors
were seat location (windows/aisle), time, humidity,
row, hip width, noise levels, green light intensity,
and buttock popliteal depth. The amplitudes of these
contributions are presented in Fig. 6.

4. Discussion

4.1. The quantitative model and accuracy

In this paper, we collected environmental and
passengers’ data from actual turboprop flights and
developed two quantitative models for predicting
comfort and discomfort, respectively. To minimize
reliance on sensor accuracy and subjective percep-
tions of comfort and discomfort, we employed the
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Fig. 6. The importance of factors regarding (dis)comfort (left comfort, right discomfort, horizontal axes represent the amplitude of the
contribution).

min–max scaler to transform parameters and predic-
tions into relative values, such as predicting changes
in (dis)comfort levels. Our model incorporates 26
parameters for predicting changes in comfort levels
and 19 parameters for changes in discomfort levels.
Using collected 36 data sets, our models are able to
predict the changes of comfort and discomfort with
an RMSE of 12% and 21%, respectively.

In a laboratory setup, Aggarwal et al. collected
data on noise and vibration and developed a lin-
ear model to predict the comfort level of passengers
with an RMSE of 8.5% [14]. Zhang et al. used 162
sets of pressure data to predict the comfort of sub-
jects in a pilot seat, and the prediction accuracy of
their IPSO-SVR model was 94% in an 80% train-
ing and 20% testing setup [17]. Zhao et al. reviewed
about 40 articles on thermal comfort models, and
they found the prediction accuracy of the algorithm
using decision tree can be more than 90% [16].
Compared to these results, the accuracies of the
proposed models are not high. Several potential rea-
sons contribute to this outcome: 1) Data used for
the proposed models were collected on real flights
instead of a controlled environment, incorporating
more noise in the data. 2) The dataset comprised only
36 sets (with 4 missing). Acquiring more data could
potentially enhance the model’s accuracy. 3) We uti-
lized the min–max scaler for data normalization, and
instead of predicting absolute values, the proposed
models predict the changes of (dis)comfort. 4) Con-
stant factors during the flight, such as seat width,
were not included in the model. Further investiga-
tion into both data pre-processing techniques, e.g.,
using the z-score method [27], and modeling meth-
ods, e.g., DNN and network pruning [28], might yield
improved results.

4.2. Comfort vs discomfort factors

Further analysis of the effect of different parame-
ters reveals that the sensation of comfort results from
the interplay of psychological, social and physical
aspects in humans. Long-term sitting leads to rising
levels of discomfort, highlighting the importance of
seating time on both the feelings of comfort and dis-
comfort [29]. Despite over 99% of the population
being fitted by modern airplane seats, individuals still
desire greater space for movement over time [30].
While the dimensions of all seats were the same
in our experiments, this desire was reflected in the
significance of anthropometric measures such as hip-
width and buttock popliteal depth, both of which
restricted the freedom of movements of passengers in
the seat. Additionally, older individuals might priori-
tize different aspects of comfort compared to younger
individuals [31], and age emerged as an important
determinant of comfort feeling, despite it has lower
impact on discomfort.

Environmental factors influence the feeling of
(dis)comfort. Passengers in the aisle and the win-
dow seats experienced different levels of discomfort.
Furthermore, we observed that exposure to green
light may also influence feelings of discomfort. The
row number exhibited a strong correlation with noise
in the ATR 72-500 (Fig.5), underscoring noise’s
impact on passenger comfort in turboprop airplanes.
Our findings also suggested that temperature and
humidity were important factors for comfort, while
humidity was also crucial for discomfort. We also
noticed that CO2 levels affect comfort, however
Herbig et al. suggested that CO2 levels were not cor-
related with comfort/discomfort in their randomized
clinical trial [32]. In addition, CO2 concentrations and
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humidity were very homogeneous in the cabin [33].
In our experiment, the recorded CO2 and humidity
levels in the local environment might be correlated
with the amount of Volatile Organic Compounds
(VOCs) emitted by humans [34]. It was conceivable
that humidity and CO2 merely served as an indicator
of VOC presence, which, in turn affects the partici-
pants’ perception of comfort.

Though most factors that influence the levels of
comfort and discomfort are similar, there are cer-
tain differences: 1) the contribution of factors to
the comfort tends to be smaller than the contribu-
tion to discomfort, which can be reflected in the
smaller amplitude on the horizontal axis of Fig.6; 2)
age plays a vital role in comfort perception. Both
of these observations indicate a more complicated
construct of the feeling of comfort, aligning with lit-
erature suggesting that comfort encompasses more
psychological constructs [7]. In contrast, discom-
fort predominantly arises from physical interactions
between users and their environment or products.
Factors such as seat positions, time, and anthropome-
try emerge as dominant discomfort factors, consistent
with existing literature [3, 29].

4.3. Limitations

Ethical considerations prevented the measurement
of noise in the user’s micro-environment. Technical
challenges also hindered the measurement of micro-
environmental vibration for each subject. As a result,
the model does not incorporate these factors, despite
their significance according to the literature [14].
Moreover, the specific ATR72-500 has a relatively
large seat pitch of 34 inches, potentially influencing
the importance of other anthropometric measures like
stature and popliteal height.

5. Conclusion

This study introduces two models aimed at pre-
dicting passenger (dis)comfort dynamics within the
context of turboprop travel. Our findings represent
advancements in quantifying the human comfort
experience through the utilization of objective mea-
surements collected during real flights. Despite
limitations posed by a constrained dataset, the
proposed models demonstrated reasonable predic-
tive accuracy, achieving RMSEs of 0.12 ± 0.01 and
0.21 ± 0.01 for predicting changes in normalized
comfort and discomfort, respectively.

Using the permutation importance method, we
identified critical parameters influencing the pre-
dictive outcomes. Anthropometric factors, including
age, hip-width, and buttock popliteal depth, emerged
as pivotal determinants of (dis)comfort. Besides,
environmental variables such as humidity, CO2 levels
(linked to VOC concentrations in our study), temper-
ature, seat positioning, row allocation, noise levels,
and green light intensity were identified as primary
contributors to passenger discomfort. In addition to
anthropometry and environmental factors, our analy-
sis underscores the critical role of time in shaping the
(dis)comfort experience. This insight lays the ground-
work for enabling explainable-AI-based minimum
viable sensing methods for real-time prediction of
(dis)comfort of passengers [35]. Furthermore, this
knowledge can contribute to the development of
personalized interventions [36] aimed at optimizing
aircraft design for improved passenger well-being.
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