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Abstract.
BACKGROUND: Functional Capacity Evaluation (FCE) is a crucial component within return-to-work decision mak-
ing. However, clinician-based physical FCE interpretation may introduce variability and biases. The rise of technological
applications such as machine learning and artificial intelligence, could ensure consistent and precise results.
OBJECTIVE: This review investigates the application of information and communication technologies (ICT) in physical
FCEs specific for return-to-work assessments.
METHODS: Adhering to the PRISMA guidelines, a search was conducted across five databases, extracting study specifics,
populations, and technological tools employed, through dual independent reviews.
RESULTS: Nine studies were identified that used ICT in FCEs. These technologies included electromyography, heart rate
monitors, cameras, motion detectors, and specific software. Notably, although some devices are commercially available,
these technologies were at a technology readiness level of 5–6 within the field of FCE. A prevailing trend was the combined
use of diverse technologies rather than a single, unified solution. Moreover, the primary emphasis was on the application of
technology within study protocols, rather than a direct evaluation of the technology usability and feasibility.
CONCLUSION: The literature underscores limited ICT integration in FCEs. The current landscape of FCEs, marked by
a high dependence on clinician observations, presents challenges regarding consistency and cost-effectiveness. There is an
evident need for a standardized technological approach that introduces objective metrics to streamline the FCE process and
potentially enhance its outcomes.
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1. Introduction

Functional capacity evaluations (FCE) are impor-
tant return-to-work assessment tools used by
rehabilitation professionals to evaluate an individ-
ual’s functional performance using similar-condition
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tasks after an injury or illness [1]. Clinicians use
FCEs to compare an individual’s current level of func-
tioning against the demands of their occupation and
outline any limitations in their ability to return to
work [1]. One method of assessment involves pro-
gressive lifting tasks, which consists of observing
progressive lifts under increasing load, to determine
safe maximal lifts [2]. This involves the clinician
observing whether the participant can complete the
lift without biomechanical compensations that may
cause additional injury and observing subjective cues
such as perceived exertion. Rehabilitation profes-
sionals, such as occupational therapists and physical
therapists, are well-suited to determine whether the
client reaches their safe maximal lift for specific
movements. Although FCEs are widely used for
return-to-work assessment, the validity and reliabil-
ity of the assessment results can be widely variable
depending on clinician experience [3]. For example,
in determining the interrater reliability of an FCE,
Mitchell et al. [3] describe how an evaluator’s train-
ing, knowledge, and experience can influence their
insight, confidence, and therefore scoring of an FCE.
In their study, all three of the evaluators reported full
agreement about the safe maximum for only 20.83%
of the 72 lifts assessed [3]. Therefore, it is necessary
to outline ways by which the assessment can be better
standardized, objectively measured, and conducted in
a timelier manner.

There are several FCEs that include different
variations of biomechanical elements, such as the
WorkWell System, Blankenship System, Matheson
FCE, ErgoScience FCE, and the Physical Work
Performance Evaluation [2]. Typically, these evalu-
ations consist of testing strength, range of motion,
biomechanics, endurance, and dexterity through
progressive lifting tasks in various positions [2].
The clinician also reviews past medical history,
conducts an interview, and completes a muscu-
loskeletal screen. FCEs may also include cognitive
and emotional components to assess abilities such
as attention, memory, problem-solving, stress toler-
ance, and coping strategies [4]. For the purposes of
this review, only the physical domain of FCEs will be
discussed.

While FCEs are commonly used in clinical set-
tings, questions about their validity, reliability, and
criteria for decision-making persist [3, 5]. During
the FCE, while the individual performs progressive
tasks, the clinician is required to make qualitative
and quantitative observations. For instance, they must
note perceived effort through the time taken to com-

plete tasks, number of breaks taken, and the use
of counterbalance required throughout the tasks [1].
Comparisons of consistency in the control of move-
ment, muscle recruitment, and endurance are also
recorded. The potential for clinician subjectivity and
experience can significantly impact the validity of
the FCE results, making it challenging to derive con-
sistent, objective conclusions about an individual’s
work capacity [6]. Additionally, a systematic review
by Gouttebarge et al. [7] highlighted that the relia-
bility and validity of FCEs remain inconsistent. In
contrast, test-retest reliability has been demonstrated
to be good using the Isernhagen Work Systems’
protocol; however, fluctuations in participant per-
formance were found to be a significant source of
measurement variability in FCEs [8]. Moreover, an
individual’s physical performance during an FCE
may be impacted by environmental and physical fac-
tors [9]. The potential for variability across clinical,
personal, and environmental contexts underscores the
need for more rigorous and individualized protocols
in FCE administration.

Another key limitation of FCEs is the amount of
time that is required to conduct all the components
within the battery. This creates a barrier for insurance
companies and employers who aim to reduce associ-
ated costs from worker’s compensation claims [10].
The components of the FCE required for the individ-
ual are dependent on the complexity of the injury and
the nature of their work. This could include multiple
batteries of assessments that can take hours to com-
plete. As the comprehensiveness of an FCE increases,
so do the costs incurred by insurance companies and
employers [10]. This escalation also strains clinical
resources, demanding more of the assessor’s time,
imposing physical and cognitive burdens on both
the assessor and the individual being evaluated, and
requiring greater utilization of clinical space. [10]
In recent years, advancements in information and
communication technologies (ICT) have presented
potential for novel integration into return-to-work
assessments. Exploring how these technologies could
be applied in return-to-work FCEs may enhance
the analysis of their potential role in supporting
clinical decision-making, Additionally, this under-
standing can help identify key gaps in the current
systems, pointing towards areas for ongoing research
and development in an effort to improve these tools.
Consequently, this study seeks to explore the extent to
which ICT could be employed in physical return-to-
work FCEs. To investigate such further, three research
questions were developed:
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1. What are the extent and types of ICT used in
return-to-work FCE?

2. What is the level of technology readiness of
these technologies?

3. What are the reported facilitators and/or barri-
ers of the use of ICT in FCE protocols?

2. Methods

To answer the proposed research questions, a
scoping review was conducted in line with the
methodological framework outlined by Arksey &
O’Malley [11] and in accordance with the Pre-
ferred Reporting Items for Systematic Reviews and
Meta-Analysis Statement (PRISMA; [12]). After for-
mulating the research questions, a research librarian
was consulted to help develop the search strategy. The
search terms were related to the concepts of return-
to-work FCE, ICT, physical health, musculoskeletal
injuries, and disorders (refer to the supplementary
materials). Medline, EMBASE, Scopus, CINAHL,
and Web of Science – Core Collection were searched
using Boolean operators on December 22, 2022,
by a Postdoctoral Fellow (MF), and compiled into
Covidence (Veritas Health Innovation, Melbourne,
Australia). Duplicates were removed, and the articles
were assessed for eligibility across each stage of the
scoping review process by two independent reviewers
who applied the inclusion and exclusion criteria, with
a third independent reviewer resolving any conflicts.

2.1. Information sources and search strategy

The databases were searched using three search
threads related to key concepts of physical condi-
tions, information and communication technologies,
and return-to-work evaluations. Keywords for each
concept were combined using the Boolean operator
“OR” as well as “AND”. Search strings included: (1)
(Injur* OR impair* OR disab* OR pain* OR muscu-
loskeletal OR MSK OR back ache* OR backache*);
(2) (“Sensor*” OR “artificial intelligence” OR “AI”
OR “tracking” OR “software” OR “application*” OR
“camera*” OR “machine learning” OR simulation*
OR “information technolog*” OR “communication
technolog*” OR “ICT” OR “computer monitor*”
OR “deep learn*” OR robot* OR “automat*” OR
smart OR app* OR VR OR “virtual realit*”); (3)
(“Work eval*” OR “occupation* assess*” OR “occu-
pation* eval*” OR “capacity eval*” OR “work* fit*”
OR “functional abilit*” OR “capacity assess*” OR

“capacity eval*” OR “return to work” OR “perform*
eval*” OR “function* assess*” OR “function* eval*”
OR “job re-entry” OR “job entry” OR “work* re-
entry” OR, OR “work capacit*” OR “work* read*”).
Refer to the supplementary materials for additional
details.

2.2. Inclusion & exclusion criteria

Studies were eligible for inclusion if they uti-
lized any type of ICT in physical return-to-work
evaluation, recruited adults aged 18 years and older,
available as full-text in peer-reviewed journals or as
conference manuscripts, and published in English.
No restrictions were placed on article publication
dates. Studies that did not provide enough infor-
mation for categorizing the manuscript, utilized
technology outside return-to-work evaluation, study
protocols, studies using FCE for cognitive, men-
tal health or behavioural impairments, conference
abstracts, review articles, and studies beyond the
scope of the review were excluded. A calibration
phase was performed amongst the reviewers prior
to commencing the abstract and full-text phases
with strong interrater reliabilities (Krippendorff’s
α = 0.869 and α = 0.829, respectively).

2.3. Data extraction & analysis

After completing the title/abstract and full-text
screens, eligible articles underwent data extraction.
Two independent reviewers extracted data on bib-
liometric information, study design, study purpose,
study length, population features, hardware type,
software type, technology readiness level, return-to-
work evaluation, and reported data on strengths and
limitations. Consensus was achieved by the authors
to categorize the technology of each publication by
the category of technology. Each technology category
was analyzed by determining the number of publi-
cations in which it was used, the participants that
used it, and its purpose in return-to-work evaluation.
The level of readiness of each technology category
was also identified using the Technology Readiness
Level (TRL) scale [13]. The scale, which ranges from
1–9, categorizes technology based on its maturity
level, defined by how advanced a technology is in
its development, and how close it is to being avail-
able on the market for purchase. The higher the TRL
level, the more accessible and supported the tech-
nology is for its intended use. Level 9 technologies
are deployed on the market and proven to work effec-
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tively for their intended applications over a significant
period.

2.4. Bias control

Several strategies were implemented to mini-
mize biases in this review. Multiple databases were
searched to reduce source bias. All included pub-
lication years and countries were used to identify
relevant articles. Peer-reviewed papers, or conference
manuscripts, available in full-text from electronic
abstract systems were included to avoid studies with
low methodological rigour. To reduce the effect of
publication bias, papers reporting both positive and
negative results were included. Further, two indepen-
dent reviewers conducted the scoping review, with a
third reviewer to resolve any disagreements during
the selection process when needed to minimize rater
bias. Quality appraisals of individual studies were not
completed because of the nature of this review. The
focus of this review surrounds the use of technology
in the methods of capacity evaluation and the out-
come of appraisal was insignificant. Thus, the use of
appraisal tools was deemed unnecessary.

3. Results

The database search (Fig. 1) identified 5534 stud-
ies; 4159 studies remained after removing duplicates,
48 of which were eligible for full-text review. Thirty-
nine studies were excluded during the full-text review
for the different reasons: not a physical return to work
assessment (n = 17), using technology outside of the
return-to-work evaluation (n = 12), review articles
(n = 4), lacking an information/communication tech-
nology system (n = 4), and study protocols (n = 2),
resulting in a total of nine studies being included in
this review. See Fig. 1 for additional details.

A summary of the included articles can be
found in Table 1. All nine studies were published
in lower impact factor academic journals (Mean
SNIP = 1.26 ± 0.55) with most published in journals
with a Q2 (33.33%) and Q3 (44.44%) quartile rank-
ing, with one journal ranked Q1 (11.1%; SCImago,
2007). The majority were published after 2012
(88.89%). There was a total of 313 participants
included across the nine studies. The authors in more
than half of the studies were affiliated with Aus-
tralia (55.56%). Other affiliations include Canada
(22.22%), Italy (11.11%), and Taiwan (11.11%).

3.1. Extent and types of ICT Used in
Return-to-Work Evaluation

The ICT used for FCEs as reported in the litera-
ture were inclusive of various hardware and software.
Technologies were divided into the following cat-
egories based on emerging themes from content
analyses: electromyography (EMG), heart rate mon-
itors, video camera/camcorders, motion detectors,
and software-based approaches. Surface EMG were
used to measure patterns of muscle activation and
recruitment, camcorders were used to record data to
measure joint angles, landmarking, and confirming
proper biomechanics, and motion sensors were used
to measure joint angles and rotation, gait analysis,
and acceleration.

EMG were used in 44.4% of studies [in 1, 14–16],
heart rate monitors in 55.6% [in 1, 2, 17–19], cam-
corders in 66.7% [in 1, 2, 14, 15, 18, 19], and
motion detectors in 44.4% [in 15–17, 20]. Several
pieces of software were used by each study but typi-
cally corresponded to the hardware involved. Table 2
provides details of all software used. Of the four stud-
ies using EMG, all used surface electrodes. Motion
detectors used across studies included the Ascen-
sion Electromagnetic Flock of BirdsTM (FOB, 33%
of studies), Motion Capture systems (33.3%), and
reflective markers on different body parts (33.3%).
Other ICT included wearable inertial measurement
units (33.3%), and an Actigraph monitor (33.3%).
See Table 2 for a summary of studies organized by
technology category.

Surface EMG (SEMG) throughout the technology
and FCE literature were used to measure participants’
muscle recruitment and activity in relation to the iden-
tification of biomechanical determination of a safe
maximal lift. Results from Hung et al. [14] found
that changes in SEMG data obtained during a lift
are a useful quantitative measure to aid in the identi-
fication and quantification of low back pain (LBP)
in the workplace, but this was found to be most
observable during lifts conducted at 30% of the indi-
vidual’s maximum. Similarly, Hubley-Kozey et al.
[16] noted observable alterations in SEMG activity
during a functional lift when comparing subjects with
LBP to healthy individuals. However, in a separate
study, no observable differences were found in SEMG
activity when participants were lifting weights lighter
than weights that were heavier than their therapist-
determined safe maximal lift [1]. In addition, heart
rate monitors were used in most studies to monitor
participants’ heart rates during an FCE. Heart rate
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Fig. 1. PRISMA Flow Diagram.

monitors are commonly used in FCEs as a protocol
for determining threshold heart rate levels [17].

Camcorders were reportedly used for various pur-
poses, which included measuring changes in joint
angles, detecting anatomical landmarks, and confirm-
ing proper lifting mechanics during FCE tasks. West

et al. [19] and Melino et al. [18] used camcorders on
the right sagittal plane to measure changes in joint
angles between minimum and safe maximum lifts.
They reported that this made it difficult to identify if
any trunk rotation occurred during the lift and sug-
gested that adding another camera on the left sagittal
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Table 1
Bibliometric, participant characteristics, and ICT used in included studies (N = 9)

First Author
(year)

Country
of
Primary
Author

Journal Purpose Sample
Size
(n)

Health Status
(n)

Mean Age
(SD)

Biological Sex Hardware Software TRL Summary of Findings

Allen et al.
(2012) [2]

Australia Work To confirm the
therapist’s clinical
judgment in
determining a safe
maximum lifting
capacity and
explore the
biomechanics of
overhead lifting

30 No muscu-
loskeletal
injuries (30)

20.9 (0.97) Male (n = 10)
Female
(n = 20)

Camcorder DartFish 6 Biomechanical
differences were observed
in the wrist, elbow,
shoulder, and sagittal
spine during safe
maximal overhead lifting,
as determined by the
WorkHab FCE, when
comparing light loads to
maximum loads

Cole et al.
(2004)
[15]

Australia Work To replicate the
lifting aspect of a
return-to-work
capacity
assessment and
investigate the
compression
forces exerted on
the lumbar spine

6 Healthy (6) Male: 36.7
(5.8)
Female: 38.7
(0.6)

Male (n = 3)
Female
(n = 3)

Camcorder,
Markers,
EMG

Peak Motus
2000, Amlab
II, 4D
WATBAK

5 Spinal compression
forces during lifting tasks
in return-to-work capacity
assessments may exceed
recommended safety
limits. Standardization
and regulation of FCE
procedures are needed

Hubley-Kozey
et al. (2014)
[16]

Canada Work To develop
metrics for
rehabilitation
guidance and
re-injury
prediction in
return-to-work
decisions by
analyzing trunk
muscle temporal
patterns

70 Lower back
injury > 12
weeks (35)
No back injury
within past
year (35)

Low back
injury: 39.6
(12.0)
Control: 35.5
(10.0)

Male (n = 34)
Female
(n = 36)

EMG LabviewTM 6 Neuromuscular patterns
stay altered in LBI
individuals, even with
apparent recovery in pain
and function. These
differences in amplitude,
response to flexion, and
muscle activation offer
insights for
return-to-work guidelines
and re injury mechanisms
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Hung et al.
(2014)
[14]

Taiwan Annual
International
Conference
IEEE Eng
Med Biol
Soc

To employ SEMG
to identify and
quantify lower
back pain

52 Chronic lower
back pain (26)
Healthy (26)

Low Back
Pain: 33.27
(NR)
Healthy
Control: 32.65
(NR)

NR EMG,
Camcorder

NR SEMG data from lifting
capacity assessments can
serve as valuable
quantitative measures for
identifying and
quantifying
workplace-related low
back pain

Iosa et al.
(2021)
[20]

Italy Frontiers in
Neurology

To assess the
return-to-work
readiness of stroke
patients, artificial
neural networks
(ANNs) were
employed to
analyze gait
assessment data
collected through
a wireless inertial
system

33 Stroke in
chronic phase
(16)
Healthy (17)

Stroke: 54.6
(13.7)
Healthy
Control: 45.7
(13.4)

NR Inertial
Measurement
Unit (IMU)

IMU
Software,
SPSS

6 The Feedforward Neural
Network outperformed
the Forward Stepwise
Logistic Regression
method in distinguishing
patients from healthy
subjects and identifying
those unable to return to
work. It linked the
inability to return to work
with the first double
support phase and trunk
rotation range of motion

James et al.
(2013)
[1]

Australia Journal of
Occupa-
tional
Rehabilita-
tion

To investigate the
relationship
between
alterations in
SEMG activity
during a
bench-to-shoulder
lifting task and a
therapist’s
assessment of a
safe maximum lift

20 Healthy (20) 39.5 (14.8) Male (n = 10)
Female
(n = 10)

Heart rate
monitor,
Camcorder,
SEMG

DartFish,
LabChart

6 While SEMG-measured
muscle activity increased
with weight, it did not
significantly change
before and after the
therapist-determined safe
maximum lift

Karpman et al.
(2020)
[17]

Canada Work To assess the
effectiveness of
two Actigraph
devices (waist and
wrist) in
measuring
performance
across five FCE
tasks: maximum
lifting, sustained
overhead work,
and a 6-minute
walk test

46 Healthy (46) 23.7 (3.7) Male (n = 24)
Female
(n = 22)

ActiGraph,
Heart rate
monitor

Actilife 6 6 The Actigraph device
showed a moderate,
positive correlation with
maximum weight lifted at
the waist but had poor
agreement between waist
and wrist placements,
favoring waist placement
for FCE tests

(Continued)
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Table 1
(Continued)

First Author
(year)

Country
of
Primary
Author

Journal Purpose Sample
Size
(n)

Health Status
(n)

Mean Age
(SD)

Biological Sex Hardware Software TRL Summary of Findings

Melino et al.
(2014)
[18]

Australia Work To assess
kinematic
differences
between WorkHab
FCE’s minimum
and safe
maximum
floor-to-bench lift

28 Healthy (28) 20.8 (1.02) Male (n = 10)
Female
(n = 18)

Camcorder DartFish 6 The observed changes in
movement during the
WorkHab FCE
floor-to-bench lift validate
the safe maximum lift
method and assessors’
clinical judgment, aiding
in identifying an
individual’s peak capacity
during lifting

West et al.
(2018)
[19]

Australia Work To assess
alterations in joint
angles during the
WorkHab FCE
bench-to-shoulder
lift, comparing the
minimum and safe
maximum load
conditions

28 Healthy (28) 20.9 (NR) Male (n = 9)
Female
(n = 19)

Camcorder DartFish 6 Notable variations in joint
angles occurred between
the minimum and safe
maximum loads in the
thoracic spine, elbow, and
shoulder during the
WorkHab FCE
bench-to-shoulder lifts;
findings validate the
clinical judgments of
assessors in setting safe
maximum lift limits

Total 313 Clinical
Population: 77

Healthy: 236

31.61 (7.93) Male: 100
Female: 128
NR: 85

Note: NR – Not Reported; EMG: Electromyography; SEMG: Surface Electromyography; TRL: Technology Readiness Level.
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Table 2
Summary of included studies organized by technology category

ICT
category

Hardware models Software Used with
Hardware

Number and
Types of Studies
using ICT

Sample
Size
(n)

Weighted
Mean Age
(Weighted SD)

Purpose/Use of ICT in
RTW

References

EMG Biocapture 150 & electrodes)
(n = 1)
Amlab II EMG system with 2
Ag/AgCl electrodes & amplifier
(n = 1)
Surface electrodes
(ADInstruments MLA 1010),
ADI Powerlab 8SP (ML 785) &
dual bioamplifiers (ML135)
(n = 1)
EMG (Ag/AgCl, 10 mm circular
electrodes & AMT-8 EMG
systems amplifier) (n = 1)

Unknown EMG
software
Amlab II EMG
System & Amlab II
Acquisition Software
LabChart software
(v7.1.2)
Labview Software
(version 7)

Non-randomized
experimental
studies (k = 4)

148 36.21 (9.43) To measure the activity of
participant’s muscle
activation during
evaluation

[1, 14–16]

HR
Monitor

Unspecified polar HR monitor
(n = 1)
Unspecified HR monitor (n = 3)
WorkHab included HR monitor
(n = 1)

Non-randomized
experimental
studies (n = 1)
Observational
(n = 3)
Cross-Sectional
(n = 1)

152 24.18 (5.73) To measure heart rate as a
metric for safe assessment

[1, 2, 17–19]

Video
Camera

Panasonic SVHS NV-MS5 Video
Camera (n = 1)
Sony HRD-HC9E Camcorder
(n = 2)
Sony Handycam Camcorders
Unknown Model (n = 2)
Unspecified camcorder (n = 1)

Dartfish ProSuite
(unknown version)
Dartfish ProSuite
(unknown version)

Non-randomised
experimental
study (n = 3)
Observational
study (n = 3)

164 27.59 (5.24) To measure changes in
joint angles and lifts
during an FCE

[1, 2, 14, 15, 18, 19]

Motion
Detectors

Electromagnetic Flock of
BirdsTM (FOB) MotionCapture
system (n = 1)
Actigraph wG3TX-BT (n = 1)
10 reflective markers on different
body joints – illuminated by
HE-888 Universal 500 W
spotlights (n = 1)
Wearable inertial measurement
unit (n = 1)

Actigraph 6 software
Peak Motus 2000
Artificial Neural
Network (ANN)

Non-randomised
experimental
study (n = 2)

155 36.10 (9.96) To obtain kinematic data
including joint angles and
angular motion

[15–17, 20]

∗Note: Studies typically used multiple technologies, and may have been classified under multiple components.
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plane may have resulted in a more accurate measure-
ment and analysis of the joints. Similarly, Allen [2]
found that due to the placement of the camcorder,
they were unable to measure joint angles when par-
ticipants moved in the oblique plane.

Motion detectors were used for measuring joint
angles and angular motion, analyzing gait, and mea-
suring acceleration. Cole et al. [15] used reflective
markers used in conjunction with a camcorder for
the purpose of obtaining a set of 2-dimensional (2D)
kinematic data. Similarly, Hubley-Kozey et al. [16]
used an electromagnetic motion capture system to
record the 3D angular motion of the pelvis when
assessing activation patterns in those with LBP. Var-
ious software were used extensively with motion
capture systems to process and analyze the temporal
and motion data.

3.2. Technology Readiness Levels of ICTs in
Return-to-Work Evaluation

All studies in the review employed technologies
classified as TRL levels 5 or 6, suggesting that
these new or integrated technologies underwent test-
ing in simulated or real-world FCE environments.
Contrary to using a singular technology that amal-
gamates multiple inputs, the studies used a blend
of distinct technologies to gather data from various
origins. Although some of the devices reported are
commercially available, with varying prices and fea-
tures, the frequent employment of multiple devices
in an evaluation system within the laboratory testing
environment decreased the TRL score across studies.

3.3. Reported Facilitators and/or Barriers of
Technologies

In the studies reviewed, there was no mention or
report of barriers or facilitators regarding the tech-
nologies employed for analyzing physical FCE tasks.
This could be attributed to the fact that each study had
distinct objectives focused on utilizing the technology
within their methods, rather than specifically exam-
ining the feasibility, usability, and implementation of
the technology.

4. Discussion

This scoping review aimed to explore the use of
ICT applications in return-to-work FCE evaluations.
The types of technology, applications, technology

readiness levels, strengths, and limitations were
extracted from each study. While there is an emerging
interest in the use of ICT in physical return-to-work
FCEs, research remains sparse. Many technologies
are focused on measuring kinesiophysical variations
during various FCE components. Although these
technologies are market-ready, their combined use
in evaluations is not widespread. ICT could poten-
tially assess various aspects of FCEs, and previous
studies suggest opportunities for these technologies
to be used in a complementary and integrated manner.
The predominant reliance on clinician observations in
many FCEs can raise concerns about reliability. Intro-
ducing standardized technology with quantitative
metrics can lead to more consistent evaluations, yet
interpretation and extrapolation to specific demands
within the work environment depend on the assessor’s
clinical judgment and experience. Although, the tra-
ditional FCE approach remains time consuming and
costly, technological integration, while promising in
streamlining evaluations, also presents challenges,
especially in terms of result interpretation.

The results of this scoping review suggest that the
accuracy of data from the various ICT employed
to record individuals’ performance outcomes dur-
ing an FCE is contingent upon the manner of their
use, placement, and administration. Calibration, a
process tailored to individual factors such as body
composition, device positioning, perspiration, skin
temperature, skin colour, and resistance, is essen-
tial for certain technologies like landmarking for
video marker placement, EMG, and heart rate moni-
tors; however, it can introduce inconsistencies and be
time-consuming [21–24]. All the technologies report-
edly used in FCEs necessitate training and expertise,
with many requiring the use of additional software,
with various data metric outputs. Interpreting these
results into actionable clinical recommendations can
be challenging without a thorough understanding of
the data. Therefore, while these technologies can
enhance FCEs, it is essential to consider the poten-
tial limitations and potential barriers to their use by
assessors.

Motion detectors were used in video analysis and
incorporated into software programs in several stud-
ies to analyze and capture movement data during
biomechanical tasks performed as part of an FCE.
These are beneficial as they provide an objective mea-
sure of an individual’s movement patterns and can
be complimented with other technologies such as an
accelerometer. Drawbacks to these devices include
cost, technical expertise, and familiarity with sys-
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tem set-up requirements including data interpretation
[25]. Motion detectors and associated motion anal-
ysis software can be costly to obtain and require
significant computing resources to use, making over-
all cost a barrier to researchers and clinical assessors.
Many of these systems are highly complex and soft-
ware translation often requires specialized training,
time, and expertise to optimize data quality and
reduce error [25]. Consequently, there’s a pressing
need for a platform with a user-friendly interface
that enables accurate and precise recordings, thereby
boosting the practical applicability of these systems
in clinical settings.

Various brands of video cameras/camcorders were
used in the studies for video capture. Despite the
potential for high-quality video capture, the accuracy
of motion analysis can be challenging to translate into
biomechanical findings. Camcorders can record joint
angles and body positioning during common FCE
tasks, which could offer valuable insights to clini-
cians. However, these devices might not capture less
apparent factors, such as muscle fatigue or weakness
alone[25]. Moreover, video capture is prone to sub-
jective error as manually processing video footage
can be time-consuming and laborious, unless there
is robust software to record and interpret associated
algorithms [26]. Despite these limitations, using a
camcorder in conjunction with measurement soft-
ware (e.g., DartFish; Fribourg, Switzerland) to record
and measure changes in joint angles could potentially
yield a more accurate and objective measure than a
clinician’s visual observation.

Surface EMG (SEMG) measurement is useful in
FCEs as it provides a non-invasive objective mea-
sure of muscle activation and function with real-time
feedback [27]. Although useful, SEMG devices are
susceptible to sensitivity interference. External influ-
ences such as skin temperature, perspiration, and
resistance can have a significant impact on the
accuracy of readings, potentially leading to skewed
or erroneous results [24, 28]. In addition to these
physiological factors, environmental disturbances,
such as electromagnetic fields from nearby elec-
tronic devices, can introduce unwanted noise; these
potentially interfere with muscle contractions, fur-
ther compromising the precision of measurements
[29]. An important drawback of SEMG is that it is
primarily designed to measure the activity of super-
ficial muscles, thereby less suitable of detecting and
quantifying the activity of deeper muscle recruitment
and introduces signal crosstalk from superficial lay-
ers [30]. This limitation means that a comprehensive

analysis of muscle function, especially in activities
that heavily involve deep muscles such as the quadra-
tus lumborum, might not be fully achievable with
SEMG alone; therefore, it is crucial to consider sup-
plemental or alternative methods for a more thorough
evaluation.

Heart rate monitors offer objective exertional mea-
sures during FCEs, providing real-time data to inform
decisions around tasks such as lifting. These devices
can enhance individualized testing by helping clin-
icians adjust the level of exertion according to an
individual’s capabilities. Despite these advantages,
heart rate monitors have limitations. They do not
capture variables such as blood pressure, perceived
exertion, or oxygen consumption [31]. Wrist-worn
monitors can be less accurate and introduce errors
compared to other avenues of heart rate monitor-
ing [21, 32]. Additionally, factors like poor sensor
placement, device movement during exercise, and
electrical interference can create artifact [33]. These
challenges suggest the need for careful consideration
when using this technology in FCEs.

4.1. Future implications

Ongoing multidisciplinary research is needed to
investigate how to effectively incorporate technolo-
gies into FCEs as there are currently no established
guidelines and no standardized norms. Additionally,
incorporating technology into FCEs would require
initial hands-on training for clinicians regarding
device use and device placement, along with spe-
cialized training related to corresponding software
use and data interpretation. Although technology is
being used to measure certain components of an FCE
in the studies reported such as lifting or bending tasks,
there does not seem to be a technology available on
the market that can support a clinician in carrying out
a comprehensive FCE evaluation from initiation to
completion.

With further research and development, the tech-
nologies discussed in this review have the potential
to be combined in a way that can improve the
standardization and efficiency of FCEs. Currently,
technologies being used in FCEs have varying mea-
surement techniques and assessment components
which makes it difficult to establish standardized
and comparable results across studies. This could be
improved with a single system that monitors real-
time information from a variety of sensors, cameras,
and other technologies, along with software to inte-
grate the data. A single system that can encompass
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these variables can help to automate the process of
FCEs and support more comparable results across
assessments.

Although FCEs can be extensive due to detailed
assessments, clinicians often face the challenge of
tight time constraints in a demanding clinical envi-
ronment. The clinician must incorporate and observe
various levels of progressive lifts to determine a safe
maximum. By using a combined technology, sensors
and software can potentially determine a safe maxi-
mum before an expert clinician is able to. Moreover,
the use of technologies can provide a more standard-
ized and precise quantification of measurements. For
example, if multiple clinicians were to implement an
FCE for a given client, the outcomes reached by each
assessment could vary due to variations in clinician
observation and measurement. While a system-driven
approach allows for precise measurement of joint
angles using sensors, cameras, and software, reducing
human error, it is important to note that such systems
can also introduce potential errors in data collection
due to various factors, as previously highlighted.

Although we included artificial intelligence (AI) in
our search strategy, there was no research to indicate
this is being used with FCE at present. AI can pro-
duce meaningful results of the assessment in several
ways. For example, AI could increase the usability
of the technology by reducing the hands-on training
required for each individual technology by promoting
the automatization of screening and result interpreta-
tion. It can also provide the clinician with instructions
and cues for the assessment, making the process more
streamlined. Moreover, it can provide personalized
instructions and feedback to participants.

Currently ICT is not being used to inform clinical
decision-making in FCEs; however, machine learn-
ing and decision-making based approaches have the
potential to provide the clinician and participant with
amalgamated data in a meaningful way. For exam-
ple, estimates on maximum carrying loads based on
data of joint angles obtained from cameras and mus-
cle activity from SEMG could be combined in a
way that would be beneficial for clinicians. Although
this review reflects a variety of technologies that are
being used for this purpose, additional research is
needed to advance technological development in this
field.

4.2. Limitations

This review presents several limitations. The pri-
mary objective of the review was to outline the range

of technologies available for return-to-work, with-
out an evaluation of their efficacy. Potential bias
exists due to the exclusion of papers not written
in the English language. Although a comprehensive
search of peer-reviewed literature was conducted,
the review was based on a relatively small sam-
ple of studies (N = 9). Of these, two studies may
have drawn on similar or overlapping participant
samples and technology methodologies [18, 19];
this might have limited the diversity of insights.
Additionally, there is potential that certain publi-
cations, especially within the grey literature, were
overlooked. This review focused solely on tech-
nologies in physical FCEs for the return-to-work
context, not considering their application in other
contexts, such as sports performance. Yet, reflect-
ing on the use of external systems in elite sports,
which track biomechanical and physiological data
without impairing performance, could provide valu-
able insights into their potential effects on functional
task performance during FCEs. Furthermore, while
the potential of AI in FCEs was underscored, the
authors of this scoping review acknowledge that other
untested ICT might be available for return-to-work
evaluations.

5. Conclusion

At present, the application of ICT in return-
to-work physical FCE assessments is still at an
early stage of applied research, and these tech-
nologies have not been widely adopted in clinical
practice. While multiple studies reviewed here
explored technologies targeting specific FCE tasks,
the literature lacks mention of an all-encompassing
technology or system to address all components
and tasks within an FCE. Present-day FCE prac-
tices are often characterized by time-consuming
processes with associated costs, and the poten-
tial reliance on subjective judgments by clinicians.
This highlights the pressing need for a standardized
technological solution offering objective measurable
data on FCE performance capacity, with ongo-
ing research, development, and innovation required.
Envisioning a unified technological approach could
promote more accurate, precise, and time-efficient
evaluations, while enhancing FCE evaluation and
patient outcomes. This innovation could stand
to benefit every stakeholder involved in treat-
ment planning through to return-to-work decision
making.
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