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Abstract.

BACKGROUND: Human-machine teaming (HMT) typically combines perspectives from systems engineering, artificial
intelligence (AI) and human-centered design (HCD), to achieve human systems integration (HSI) through the development
of an integrative systems representation that encapsulates human and machine attributes and properties.

OBJECTIVE: The study explores the main factors contributing to performance, trust and collaboration between expert
human operators and increasingly autonomous machines, by developing and using the PRODEC method. PRODEC supports
HSI by improving the agile HCD of advanced sociotechnical systems at work, which qualify as human-machine teamwork.
METHODS: PRODEC incorporates scenario-based design and human-in-the-loop simulation at design and development
time of a sociotechnical system. It is associated with the concept of digital twin. A systemic representation was developed
and used, associated with metrics for the evaluation of human-machine teams.

RESULTS: The study is essentially methodological. In practice, PRODEC has been used and validated in the MOHICAN
project that dealt with the integration of pilots and virtual assistants onboard advanced fighter aircraft. It enabled the devel-
opment of appropriate metrics and criteria of performance, trust, collaboration, and tangibility (i.e., issues of complexity,
maturity, flexibility, stability, and sustainability), which were associated with the identification of emergent functions that
help redesign and recalibrate the air combat virtual assistant as well as fighter pilot training.

CONCLUSION: PRODEC addresses the crucial issue of how Al systems could and should influence requirements and
design of sociotechnical systems that support human work, particularly in contexts of high uncertainty. However, PRODEC
is still work in progress and advanced visualization techniques and tools are needed to increase physical and figurative
tangibility.

Keywords: Integrative human and machine systemic representation, flexibility, human systems integration, trust, collabora-
tion, scenario-based design

1. Introduction

Human machine teaming (HMT), where the
machine is increasingly autonomous, has appli-
cations in a wide range of industries such as
aeronautics and space, defense, transportation,
energy, healthcare, and manufacturing. Although
HMT, also called Human-Autonomy Teaming and
Human Artificial Intelligence (Al) Teaming (HAT),
is now an accepted concept [1], the concept of auton-
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omy needs to be better defined, when applied to
both humans and machines, as well as humans and
machines combined. Today, we have software-based
algorithms (some of which are Al-based) that confer
some autonomy on machines capable of performing
tasks normally assigned to people, involving percep-
tion, conversation, and decision making [2].

Let’s provide useful working definitions in this
article that address the complementary combination
of human and/or machine autonomy, where machine
autonomy is the capacity of a machine to act safely
and efficiently on its own in an environment, and
human autonomy refers to people solving problems,
often unexpected, using appropriate human skills
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and knowledge, as well as technological and orga-
nizational support. This dual concept of autonomy
requires a redefinition of what a system is. We con-
sider that systems can include people, and people
can include machines. This consideration leads to the
concept of “sociotechnical system,” defined as a sys-
tem of human and machine systems interacting within
complex societal infrastructures and generating the
emergence of human behaviors in various domains
such as healthcare, transportation, defense, and envi-
ronmental systems issues [3—5]. Therefore, we talk
about systems of systems, or agencies as societies
of agents [6], which can themselves be considered
as combinations of human or machine agents. This
approach provides us with a framework to further
define human systems integration (HSI).

In addition, autonomy requires adaptation. Peo-
ple adapt to machines, even “autonomous” machines,
and machines adapt to people using both supervised
and/or unsupervised machine learning. The stability
of this co-learning mechanism requires metrics to
support the maturity of the resulting sociotechnical
system.

Section 1 of this article provides an integrative
representation of physical and cognitive systems use-
ful for HSI investigations of HMT systems. This is
where our ontological approach differs from pre-
vious approaches to human-machine systems, as
it is based on a representation that allows both
humans and machines to be defined as systems
(e.g., sociotechnical systems). This representation is
integrative because it integrates the physical and cog-
nitive aspects of the human and the machine.

Section 2 is devoted to presenting what we
can understand by autonomy, whether for humans,
machines, or human-machine systems. In addition,
it is crucial to improve our understanding of the
automation-autonomy distinction from an HSI per-
spective [7, 8]. It is important to note that current
automated machines are not self-directed [9]. Indeed,
we have massively automated machines during the
20th century, but this type of automation has rarely
led to convincing autonomy of the machine (e.g., the
ability to make choices when faced with an expected
or unexpected situation). Although different levels of
automation have long been defined [10, 11], auto-
mated systems are designed to perform specific sets
of largely deterministic steps to achieve a limited set
of predefined outcomes [12].

While automation has proven to be a useful and
essential solution to safety in well-specified contexts,
it makes work processes more rigid, often counterpro-

ductive, or even dangerous, specifically in unexpected
situations in which flexibility is needed to perform
problem-solving tasks. Specifically, how can technol-
ogy, organizations and people’s competence improve
this flexible problem-solving in unexpected situa-
tions? We have attempted to answer this question
by defining and developing the PRODEC method,
which identifies human and machine activity during
design and development, using scenario-based design
and human-in-the-loop simulations, to better explore
and elicit the emergence of potential socio-cognitive
augmentation that could improve the autonomy of
the sociotechnical system under consideration, which
should have the ability to self-manage in a safe,
efficient, and comfortable manner. Socio-cognitive
augmentation is made incrementally explicit through
the agile development of prototypes and formative
evaluations, as well as formulated as emergent func-
tions and structures of appropriate agents or systems
of the overall sociotechnical system under consider-
ation.

Section 3 describes the PRODEC approach and
method developed and refined primarily on the
MOHICAN project, which focused on intelligent
assistance to fighter pilots, and two other projects
devoted to tele-robotics on oil-and-gas drilling plat-
forms [13] and Al-assisted remote maintenance of
helicopter engines [14]. In this article, we use the
first project as a running example. We have also been
influenced by a recent state-of-the-art in the field of
human-machine teaming [3], where the machine is
becoming increasingly autonomous. This state-of-
the-art in HMT is very comprehensive and covers
HSI processes and measures of HMT collaboration
and performance. However, this very dense work does
not cover the need to put into perspective a system
representation that supports human-machine team-
work and that addresses automation and autonomy
at all possible relevant levels of granularity, which
is precisely the goal of the ongoing analytical and
empirical work presented in this article and embod-
ied in the PRODEC method. PRODEC is also based
on new maturity and tangibility metrics.

PRODEC encapsulates techniques of knowledge
elicitation, agile design and development, and for-
mative evaluation. It is based on generic multi-agent
models [13], and deeply rooted in previous work
that includes types and levels of human interac-
tion with automation [15], distributed cognition
[16], multi-agent systems [17], human-robot inter-
action [18], systemic interaction models [7, 28],
organizational automation [20], computer-supported
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cooperative work [21], trust in automation [22], and
other relevant approaches and models. The develop-
ment of PRODEC is still a work in progress on three
large industrial projects already mentioned, exploring
various kinds of metrics that assess team perfor-
mance, HMT issues of trust and collaboration, as
well as organization models in relation with authority
sharing, and tangibility considerations (i.e., complex-
ity, maturity, flexibility, stability, and sustainability
issues, as explained in [19]).

PRODEC focuses on both procedural and problem-
solving skills for both humans and machines. This
distinction addresses the differences between han-
dling expected and unexpected events in complex
sociotechnical systems. Using a new knowl-
edge representation that supports transdisciplinary
HMT research and development, PRODEC directly
addresses the critical question of how Al systems
“could and should influence requirements and the
design of systems that support human work, particu-
larly in settings that are high in uncertainty” [3].

Section 4 is dedicated to HMT metrics to better
master these new machines considered as partners.
Of course, since the Al-based systems that we are
co-developing and operating are still immature to
some extent, the results are still preliminary. How-
ever, the current success of the PRODEC approach in
the military and civilian worlds is worth presenting.

The conclusion reviews the current theoretical and
practical results of HMT, using a possible future
air combat system as an example. It offers several
perspectives and examines the role of humans and
organizations in more generic life-critical systems of
systems, including the issue of authority sharing.

2. Towards a physical and cognitive systemic
representation

The Human Machine Teaming (HMT) approach,
which considers “the machine as a partner,” requires
a better understanding of the evolution from rigid
automation to flexible autonomy, where autonomy
is considered not only for people and machines as
individuals, but also for combinations of people and
machines as human-machine teams, and even teams
of teams.

Therefore, emphasis should be placed on the cross-
fertilization of multi-agent representations provided
by Al and those of systems of systems developed in
systems engineering (SE) [23, 24]. In Al, this under-
standing is based on the concept of an agent, which

represents a human or a machine capable of identi-
fying a situation, deciding, and planning appropriate
actions. In this context, for example, the armed forces
are composed of “human and machine agents,” with
the machines being increasingly equipped with Al
algorithms. Al refers to systems that demonstrate
intelligent behavior by analyzing their environment
and acting — with some degree of autonomy — to
achieve specific goals.

Command and control (C2) systems are now
integrated with cockpits and, more generally, inter-
connectivity has become a real support to air force
operations but also requires human-centered systemic
integration. This leads to the definition of specific
methods and tools such as scenario-based system
design and digital twins [25]. The development of
Al-based systems contributes to the generation of
new emerging human roles and then functions that
need to be identified more precisely. Specifically,
safer, more effective, and more comfortable HMT
integration requires a better understanding of emerg-
ing human factors such as situational awareness,
decision making, and risk taking. In addition, the
trust-collaboration-performance triad needs to be bet-
ter articulated and measurable.

In 2019 in the United States, the Systems Engineer-
ing Research Center (SERC) developed a roadmap
structuring and guiding Al and autonomy research to
support SE [26]. They introduced the acronym AI4SE
(Artificial Intelligence for Systems Engineering).
Conversely, SE practices could be used to support the
development of increasingly automated and increas-
ingly autonomous systems (SE4AI). These AI4SE
and SE4AI approaches primarily view Al as machine
learning (ML) and data science. Whether super-
vised, unsupervised, or reinforcement-based, ML has
a specific role that requires addressing three types
of problems: learning assurance, explainability, and
security risk mitigation [27]. In practice, the major
problem remains, namely the certification of learn-
ing systems. Indeed, certification requires that all
elements of a software code be delivered unam-
biguously, which is not possible for neural network
systems. For this reason, our vision of the AI-SE
combination does not address issues of complemen-
tarity, but rather disciplinary issues and perspectives
of similarity and collaboration.

A major problem remains, namely the certifica-
tion of learning systems. Indeed, certification requires
that all elements of a software code be delivered
unambiguously, which is not possible for neural net-
work systems. However, two major points must be
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considered: Al is much broader than ML and data
science, and we should consider that Al and SE
have much in common. Indeed, Al is a very broad
discipline that includes data-driven Al (i.e., data sci-
ence), knowledge-based Al (i.e., rule-based systems,
expert systems), hybrid Al (i.e., the right mix of
neural networks and symbolic Al), and distributed
and embedded Al (i.e., multi-agent systems). Al and
SE are typically combined with software engineer-
ing, safety/security engineering, and human factors
and ergonomics. Alternative initiatives are currently
being considered to investigate an HSI representation
where cognitive and physical systemic dimensions
can be harmoniously handled together [28].

This representation of physical and cognitive sys-
tems is very useful for analyzing the contemporary
shift from 20th century technology-centered engi-
neering, which began with physical systems and
ended with software augmented systems — in effect,
a shift from hardware to software — to 21st century
human-centered engineering design, which begins
with a set of PowerPoint boards expressing ideas,
animates them, and then realizes a virtual prototype
and human-in-the-loop simulations. PRODEC was
developed to support the early human systems inte-
gration into design and development processes (i.e.,
incrementally address human requirements in an effi-
cient and agile manner). Specifically, increasingly
autonomous (Al-based or data-driven) functions can
be considered and, more importantly, tested much
earlier than before. However, the correct realization
of this new trend requires an appropriate representa-
tion of physical and cognitive systems for the design
of the dual concept of human and machine autonomy.

The concepts of system and agent are representa-
tions, respectively used in SE and Al In this article,
we use the terms “system” and “agent” to refer to the
same entity. Furthermore, a system can be defined
as a “system of systems” (SoS) [24], and an agent

as a “multi-agent system” or a society of agents
[29]. Autonomy is a central element of this systemic
definition, as systems can be dependent, indepen-
dent, or interdependent on each other. For example,
some future air combat systems, considered SoSs,
are described as autonomous, in the sense that they
can live on their own for a period of time if necessary,
and are required to share situational awareness, main-
tain trust with each other, be reliable, and agree on a
collaborative and distributed work organization. “By
2040, the Future Combat Air System (FCAS) will be
based on a networked architecture, bringing together
manned and unmanned platforms within a system of
systems. This paradigm is fully in line with Man-
Unmanned Aircraft teaming, i.e., the hybridization
of human and machine in a holistic cognitive system.
Precisely, Paul Scharre [30] refers to this hybridiza-
tion through the mythological form of the ‘centaur
warrior’, half man, half horse” [31].

What is a system? Several definitions have been
proposed. A system is generally defined as “a combi-
nation of interacting systemic elements organized to
achieve one or more stated objectives” [32, 33], and
“something that does something (activity = function)
and has a structure, which evolves over time, in some-
thing (environment) for something (purpose)” [34].

Most people think of a system as a machine. In
fact, when doctors talk about the cardiovascular
system, they are talking about a representation of a
human organ that allows blood to flow throughout
the body, not a machine in the mechanical sense.
Social scientists talk about sociocultural systems.
Here again, they speak of representations (Fig. 1).
More generally, we will speak of “natural systems”
(including human systems), and “artificial systems”
(including machine systems), which may include
other systems, recursively defining the broader
concept of system of systems. For example, the
human body (i.e., a natural system) can include a

can be can be
Cogpnitive Function Physical
has at least
one
can be can be

(\VET T represented

- - System
can include can include
has at least
one
can be can be
Physical Structure Cognitive

Fig. 1. A system as a representation.
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pacemaker (i.e., an artificial system), and conversely,
a car (i.e., an artificial system) can include a human
being (i.e., a natural system). A system is defined
by its structure and function which can be physical
and/or cognitive. More specifically example, the
human heart has a specific structure that allows it to
pump blood (i.e., its main function).

The PRODEC method has been used in an air
combat system project called MOHICAN. The goal
of this project was to derive performance metrics
to assess the collaboration between pilots and cog-
nitive systems, as well as trust in those cognitive
systems. Within MOHICAN, we explored the rel-
evance and usability of a wide range of physical,
informational, human, environmental and organiza-
tional parameters already considered by previous
studies on automation and autonomy. Examples of
cognitive functions tested in MOHICAN are adapted
trust and interdependence, delegation of authority,
and action initiative (taking and abandoning). MOHI-
CAN will be used in this article to illustrate how the
PRODEC method can be applied.

3. The automation-autonomy distinction: The
flexibility challenge

In sociotechnical systems, a better understanding
of automation and autonomy requires defining the
concept of “cognitive function” [35]. Not only do
humans have cognitive functions that are described
as natural, but also that digitized machines can have
artificial cognitive functions. The representation of
cognitive functions is generally defined in two ways:

Goal(s)
W Decision )
Knowledge Identification |— making [ Planning
Situation Situation(s) Tasks
Rules Recognition || / Task(s) (procedures)
Skills Sensors —+| Effectors

[

Environment

b

(1) a logical way where a cognitive function is seen
as an application used by a human or a machine to
transform a task (what is prescribed to be performed)
into an activity (what is effectively performed); (2)
a teleological way that provides a cognitive function
with attributes such as a role, a validity context, and
resources.

The role of the function is the identity of the cor-
responding agent or system within the organization
under consideration (e.g., the role of the letter carrier
within the postal organization is to deliver letters).
The context of validity is usually defined in time
(e.g., 8 am. to 5 p.m., with a two-hour break at
noon, every working day), space (e.g., knowledge
of the clearly specified neighborhood where letters
are to be delivered), and normal, abnormal, or emer-
gency situations. Resources could be physical (e.g.,
a bag and a bicycle) or cognitive (e.g., a cognitive
pattern-matching function used to determine whether
the address on the letter matches actual street and
house information).

Cognitive function analysis has been successfully
used in several aerospace projects [5, 36]. Consid-
erations of function allocation in the HMT era have
recently been published [37], based on an extension
of Fitts’s MABA-MABA approach [38]. Cognitive
functions (CFs) can be categorized according to
Rasmussen’s model of human behavior to better
interpret the emergence of contributing engineering
disciplines with respect to machine automation [39]
(Fig. 2).

Both people and machines can be “automated”
(Fig. 3). First, human cognitive functions can be
automated either by intensive training and long expe-

Cognitive Engineering Human-Machine

Human Sciences 2000s ——
Social Sciences g
Operations Research :
Optimization 1980s Sugerwslory
Expert Systems ontro
Electrical Engineering  1960s Basi
Mechanical Engineering asicy
/ Automation \ 1930s Automation

Fig. 2. The evolution from automation to autonomy based on Rasmussen’s model.
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rience or by following a procedure (e.g., the pilot’s
checklist). Second, from an engineering perspective,
machines automation involves developing appropri-
ate algorithms that replace human (i.e., natural)
cognitive functions with machine (i.e., software and
thus artificial) cognitive functions. However, both
types of automation can only work and be used in very
specific contexts (i.e., in expected situations). Out-
side of these contexts (i.e., in unexpected situations),
their rigidity can cause incidents or accidents [40,
41]. Therefore, in unexpected situations, the people
in charge must solve problems by themselves using
the physical and/or cognitive resources available,
whether they are humans or machines. Therefore,
these actors need flexibility, as well as appropriate
knowledge and skills to solve problems, often unex-
pected, requiring autonomy, as opposed to following
procedures or monitoring the automation of machines
based on initial planning.

PRODEC is based on four broad categories of
cognitive functions that contribute to autonomy:
situational awareness (perception, monitoring, con-
struction of mental model and knowledge, trend
identification and detection of anomalies); reason-
ing (generally involving three types of inferences:
deduction, induction, and abduction); action (mis-
sion planning, activity and resource scheduling, task
execution and control, fault diagnosis, crisis man-
agement, learning, and adaptation); and collaboration
(shared knowledge and understanding, prediction of
behaviors and intentions, negotiation of tasks and
goals, operational trust building). When dealing with
machine agents, the related cognitive functions must
be built, verified, and validated through a series of

tests on human-in-the-loop simulations, which raises
systemic problems of designing specific architec-
tures.

Resources that are useful and can be used in unex-
pected situations are called “FlexTech” [7]. Indeed,
FlexTech resources are there to help human opera-
tors be more autonomous and allow them to easily
move from rigid automation to flexible autonomy.
Operational flexibility is achieved when each agent
in a problem-solving situation, trying to react to an
unexpected event for example, finds effective help
from one or more of these partners. For example, the
“undo” function is a FlexTech resource used in word
processing to remove a misspelled word, thus pro-
viding flexibility to writers in their typing tasks. The
“undo” function cannot qualify as an autonomous
function; however, its availability and effectiveness
allow a writer to be autonomous in the sense that he or
she does not need external assistance or perform very
complicated tasks to correct a typo. The “undo” Flex-
Tech function is very different from an automated lex-
ical and/or syntactic text checker that automatically
changes sentences as you type and is very rarely con-
text sensitive. Automation replaces humans in very
specific contexts, while FlexTech supports human
activity in much broader contexts. Automation can be
very inefficient when used out of context, decreasing
situational awareness, and generally resulting in per-
formance decrements that place the human operator
out of the loop [42]. In practice, human operators
using automated machines tend to be complacent,
especially when the automation works perfectly in the
contexts in which it has been validated but become
fragile outside of these contexts.
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At this point, it is important to distinguish between
a partner and a teammate. A teammate is a mem-
ber of a team, and a partner is an associate with a
team in a common activity or interest. Therefore, the
term “partner” was chosen instead of “teammate” to
describe Al-based or data-intensive machines.

In the case of the letter carrier, the cognitive func-
tion “delivering letters” can be automated at different
levels of automation. The letter carrier’s bicycle can
be replaced by a more or less automated car that offers
more physical comfort in terms of fatigue, for exam-
ple —note that we see here how physical and cognitive
functions can be articulated. If e-mail can be seen as a
different mode of communication than the paper let-
ter, it can also be seen as a higher level of automation
of mail delivery, in which postal workers are radically
replaced by computers, software and information net-
works. The uses of email also assume that the various
human agents involved have appropriate tools with
adequate physical and cognitive functions defined in
specific contexts of validity (e.g., a functioning power
supply and servers, and an appropriate user interface).

Autonomy is a property that gives a human or
a machine sufficient robustness to function without
external intervention or supervision. In the case of a
human, some more or less automated machines allow
us to be more autonomous and, more generally pro-
vide us with functions that we do not naturally have.
Two examples can be cited: exoskeleton systems can
offer more autonomy to handicapped people; the air-
plane allows us to fly, whereas the human being is not
naturally able to fly.

While airplanes allow us to travel a greater distance
in less time, they also introduce new scheduling con-
straints — we need to learn how to use their services.
In the case of a machine, machine autonomy is nec-
essary when a system must make a time and/or life
critical decision that cannot wait for external help.
This is especially true when managing a remote sys-
tem; the system must then be equipped with rich
embedded data and decision-making systems [41].
For example, NASA’s Curiosity and Perseverance
rovers can autonomously move from one point to
another on Mars using stereo vision and on-board
path planning. In both cases, autonomy requires a
clear representation of the system, whether it is a
human or a machine (Fig. 1).

4. PRODEC for human systems integration

Al-based systems cannot be successfully devel-
oped without appropriate HSI methods, metrics, and

evaluation tools. HSI favors Scenario-Based Design
(SBD) to ground proposed solutions [43]. This type of
design requires subject matter experts, such as fighter
pilots, air traffic controllers, and C2 personnel. The
PRODEC method has been developed to promote
knowledge acquisition by subject matter experts,
creativity, scenario design, and human-in-the-loop
simulations (HITLS) which allow, through their use,
discovery of some emergent properties of the studied
sociotechnical system from the analysis of the activ-
ity coming from the interactions between the different
human and machine systems [13]. PRODEC is useful
for the analysis, design, and evaluation of a complex
sociotechnical system. The knowledge obtained from
business experts in the form of procedural scenarios
(the PRO part of the PRODEC method, for “procedu-
ral”) can be transcribed in the form of directed graphs,
for example of the tasks involved in the description
of a mission or a job to be performed. Such directed
graphs can be developed using BPMN (Business Pro-
cess Modeling and Notation) [44]. The explicitness
of knowledge from experience helps to develop the
task analysis by decomposing a high-level task into
subtasks, and so on. The analysis of these incremen-
tally developed task graphs allows the discovery of
functions that were not initially anticipated. These
are called “emergent features.” It may also turn out
that “emergent structures,” which had been forgot-
ten in the architecture of the sociotechnical system
under development, appear as integral parts. These
“discoveries” of emerging functions and/or structures
discovered during HITLS contribute incrementally
to the improvement of the declarative scenarios
(the DEC part, for “declarative”) expressing the
configurations of the sociotechnical system under
development.

The PRODEC cycle can be described as follows:
(Step-1) initial task analysis; (Step-2) elicitation of
emergent functions and structures; (Step-3) imple-
mentation of the prototype using the declarative
representation shown in Fig. 4; (Step-4) human-
in-the-loop simulation; (Step-5) observation and
analysis of the activity for elicitation of emergent
properties; (Step-6) modification of the previous task
analysis; and (Step-7) for further refinement, return
to Step-2. Task analysis (i.e., the development of pro-
cedural scenarios in steps 1 and 6) allows for the
implementation of scenarios that not only guide the
development of prototypes to test new system con-
figurations, but also allow for the gradual elicitation
of emergent properties and the step-by-step modifi-
cation of the task analysis.
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The PRODEC method was used in the MOHICAN
project to elicit the various human and machine func-
tions from three fighter pilots to be tested against
metrics of operational performance enabling the
assessment of trust and collaboration between a
fighter pilot and the virtual assistant being devel-
oped. To explore trust and collaboration between the
Human and the Machine on most of the operational
tasks that could be entrusted to the system of sys-
tems (e.g., latest generation fighter aircraft, crew), the
operational scenario selected mixed planned air-to-
ground attack sequences, dynamic targeting phases,
and finally air-to-air interception phases. The crews
were immersed in three complex missions in a semi-
permissive environment, where they could not avoid
considering the enemy threat, nor coordination with
friendly forces.

The following PRODEC cycle was used:

Step-1: Task analysis. We first developed several
mission timelines divided into specific flight phases
from expert pilots’ stories. These flight phases corre-
sponded to generic permanent processes or temporary
processes activated according to the context and the
tasks to be performed. In total, three generic perma-
nent processes have been identified (e.g., piloting)
and eight temporary processes (e.g., ground-to-air
threat avoidance). A task analysis was carried out
for each multi-agent process. This knowledge acqui-
sition from experts was done through interviews,
direct form filling (using Excel spreadsheets and tran-
scription using BPMN), and GEM (Group Elicitation
Method) sessions [45]. Although the operational con-

text was complex, the method made it possible to
precisely determine the tasks and subtasks to be per-
formed, the necessary resources, the agents involved,
the useful cognitive functions requested and their
intensity (attention interval) for each process of a
mission. This led to the definition of the multi-agent
context, and consequently the future domain of use
of the models.

Step-2: Physical and cognitive structure-
function analysis (derived from the original
cognitive function analysis (CFA) supported by the
AUTOS pyramid, see [35]). We identified human and
machine cognitive (and physical) functions from the
task analysis. CFA is declarative (i.e., it enables the
declaration of methods, functions and so on, which
can be allocated to human and/or machine agents).
In total, 21 functions were identified and classified
according to Endsley’s SA model and described in
a SADMAT format (Situation Awareness, Decision
Making or Action Taking) [13]. Each function was
defined by its role, context of validity, and useful
human and/or machines resources. For example, the
“Acquiring Information” function enables the pilot
to retrieve data via the weapons system, geographic
information systems, and other systems. This func-
tion can be evaluated from a variety of perspectives,
including accuracy, time, workload, utility, and so
on. Among the cognitive resources associated with
this function, we can name perception and among
the physical resources related to the context to which
it appeals, we can name the information coming
from the GIS (Geographic Information System), the
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Fig. 5. Experimental set up of the MOHICAN project.

weapon system, the Targeting pod, and so on. Of
course, this depends on the context and resources
available. Using the CFA approach to cognitive func-
tion modeling, we considered their roles, contexts of
validity, and resources [35]. From this representation
of human knowledge, a distribution of tasks between
humans and virtual assistants was proposed and then
resulting activity was analyzed via human-in-the-
loop simulations while considering the complexity
of the operational context.

Step-3: Creation and use of a simulation
environment. We used an existing digital combat
simulator that allows single and multiplayer piloting
in large-scale military operations. The single-pilot
cockpit, equipped with a virtual assistant called
JESTER, was used in a multitasking mode, enabling
delegation of tactical functions to JESTER. A con-
textual menu and a voice recognition system allowed
the pilot to make requests on JESTER. This first
setup required the development of complementary
functions to improve the maturity of the virtual assis-
tant. In total, three versions of the virtual assistant
have been developed (JESTER+ / JESTER BASIC
/ JESTER ADVANCED). Figure 5 shows a pic-
ture of the experimental setup with the JESTER
ADVANCED version of the virtual assistant. Some
functions of the virtual assistant using a voice recog-
nition system were simulated using a Wizard of Oz
technique (e.g., Air Defense Package Leader, C2 per-
sonnel). Of course, each pilot was previously trained
to fly the aircraft simulator as well as the different
versions of the virtual assistant. The duration of each
simulation was approximately one hour.

Step-4: Human-in-the-loop simulations
(HITLS). We conducted a series of HITLS based
on dense and realistic scenarios contextualizing the
previously described BPMN models. Five HITLS
were carried out, involving three fighter pilots at

every iteration, where the difficulty of the scenarios
increased from one simulation to the next, and
functions of the virtual assistant were upgraded
three times in an agile manner. To increase the level
of difficulty of the experiments, the operational
context has been hardened to make it iteratively
more complex (e.g., targets more difficult to identify,
multiplication of threats and their technicality,
reduction of margins (e.g., time, fuel, etc.).

Step-5: Activity observation and analysis.
Pilot’s activity was recorded for further activity anal-
ysis, as well as HMT performance analysis based on
a performance model, with new structure-function
analysis leading to progressive tangibilization of the
domain ontology. Tangibility is taken in the sense
defined in [16]. Note that in many cases, the physical
simulation facility had to be modified incremen-
tally using rapid prototyping to improve the virtual
assistant design. During the simulation phase, we col-
lected human factors data (e.g., eye tracking, heart
rate, video, etc.) and meaningful operational param-
eters regarding fighter pilot’s activity.

Step-6: Incremental discovery of emergent
properties and features. A BPMN was created after
each simulation and for each pilot. The comparison of
tasks and activities re-instantiated in a BPMN-CFA
process form enabled us to explore and eventually
discover emergent functions and structures that were
reintroduced in the next design iteration (both tasks
and in virtual assistant were modified). Figure 6
presents the analysis of the first iteration of sim-
ulations with the JESTER+ version of the virtual
assistant. Through BPMN-CFA analysis, we iden-
tified the emergent function related to the need to
remind the pilot of the safe altitude and heading. This
function has been added to the next virtual assistant
version that is JESTER BASIC. It has been analyzed
that in the case of an operational context without
major difficulties, the level of trust and collabora-
tion of the pilot towards the virtual assistant for this
function was high. On the other hand, in the case of
an increase in the difficulty of the scenario and the
mobilization of significant cognitive resources on the
part of the pilot, the level of trust decreased sharply.
The pilot’s trust in the onboard virtual assistant is
a complex, dynamic and multidimensional concept
that is highly context and time dependent (i.e., the vir-
tual assistant can quickly gain or lose the pilot’s trust
during a mission). Although this notion of context
is difficult to formalize, an index evaluating pilot’s
theoretical workload in real time has been devel-
oped and implemented in the latest version of the
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virtual assistant (JESTER ADVANCED). This index
was formalized from pilot’s activity and simulation
context data acquisition and interpretation.

Step-7: Stop when satisfactory metrics, criteria,
functions, and structures were found, otherwise
back to step 1. At each iteration, the method con-
sisting of the core measures, intermediate criteria,
and high-level metrics was challenged and updated,
considering their relevance, validity (meaning and
content), and ease of implementation. After five
iterations, we managed to improve the method by
evaluating intermediate criteria and combining them
to obtain an assessment of degrees of trust and col-
laboration. In the same way, the analysis of emerging
functions at each iteration has allowed the level of
trust between the pilot and the virtual assistant to
evolve.

5. Model-based human autonomy teaming
metrics

A model is an abstraction of a real-world
phenomenon, which is used to increase our under-
standing of it by evaluating various appropriate
metrics. Metrics are associated with performance
evaluation platforms for the verification and valida-
tion of the relevance and effectivity of the design of
a system [46]. They are necessarily based on rele-
vant models. We generally refer to this approach as
the model-based approach (Fig. 7). In the context of
HSI, these models are now translated into the form of
digital twins, which supports model based HSI [25].

Phenomena @ Data

mmmmmmmm— — o Metrics
Model m Predictions

Modification

Comparison

Interpretation

Fig. 7. Modeling method for exploring phenomena.

For example, we are developing this digital twin
concept in several domains including operational
maintenance of helicopter engines [14] and remote
operations of an oil well [47]. In these two applica-
tion cases, we are working on simulations, machine
learning and reasoning systems to facilitate decision
making. Individuals involved in such simulations are
likely to develop trust or distrust in all or parts of
the system being operated and, as a result, develop
appropriate strategies to implement. Trust is there-
fore a major issue in the partnership between humans
and machines with autonomous capabilities, espe-
cially as trust in systems that are constantly evolving
is difficult to rationalize.

Several iterations are necessary to ensure that the
model being used is appropriate for the work to
be done, and improvable. Without a subject matter
expert, the model-based method does not work. In
fact, not only do the results need to be evaluated by
subject matter experts, but the measurement model
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itself also needs to be evaluated. In our work, we
are looking for appropriate models that could be use-
ful and adaptable in air combat settings, focusing on
multi-agent approaches. These models can be sym-
bolic and/or mathematical, allowing the definition of
metrics to support the elicitation of qualitative and/or
quantitative data. In the MOHICAN project, our pri-
mary concerns were trust and collaboration models,
which we tried to translate into useful qualitative met-
rics for HMT.

Trust is a very rich subject that has been explored
for a long time in many fields, such as psychology,
sociology, human factors, philosophy, economics,
and political science. It is related to many factors
and processes, such as uncertainty and vulnerabil-
ity [22], risk taking [48], distributed dynamic teams
[49], and team training [50], for example. Trust is
intimately related to cooperation and collaboration.
This article focuses on a systemic and organizational
(i.e., multi-agent) view of trust and collaboration
[51, 52].

David Atkinson pointed out that autonomous
agents are not tools, but partners with some specific
properties that we are using in PRODEC [53]. He
postulated that “trust we place in automation today
is based on trust gained over many years of devel-
oping highly reliable and complex systems.” All of
this means that trust in complex systems is based on
familiarity. How long does it take to become famil-
iar with an autonomous system? The more familiar
you are with a complex sociotechnical system, the
more you know how to use it, the more you can
trust or distrust its behavior and properties. Becom-
ing familiar with a complex system allows you to
know whether it can be trusted or not, whether it
is an autonomous system or not. However, getting
familiar with such a system can take a long time.
So, what method would be useful and efficient to
get familiar with a complex system more quickly?
Human-in-the-loop simulations are very effective for
such familiarization. Human-in-the-loop modeling
and simulation tools lead to the concepts and tools
of digital twins, which allow a virtual representa-
tion of an object or system covering its life cycle
(from the first idea to the obsolescence of a system).
We are developing this digital twin concept in sev-
eral domains, including operational maintenance of
helicopter engines [14] and remote operations of an
oil well [47] using PRODEC. We have found that
the discovery of the emergent behavior and proper-
ties of trust and distrust during HITLS has helped us
redesign and recalibrate the MOHICAN air combat

assistant as well as fighter pilot training (i.e., machine
and human cognitive functions).

Rephrasing what Klein and his colleagues [54]
have already produced in the field of human-robot
interaction, here are some concepts that are highly
relevant to HMT based on our experience in the
MOHICAN project: the more adaptable one is, the
less predictable one is; collaboration should be based
on the SADMAT model (i.e., Situation Awareness
[SA] - Decision Making [DM] - Action Taking
[AT]) developed in the MOHICAN project, link-
ing SA, DM and AT [20]; attention management
should be done in context and with shared under-
standing. SADMAT is fully compatible with the
OODA loop (which means Observe-Orient-Decide-
Act), proposed by John Boyd, military strategist, and
colonel in the US Air Force. OODA is a concept com-
monly applied in combat operational processes [55].

Trust is intimately related to cooperation and col-
laboration. In addition, in the multi-agent context
of a future air combat system, cooperation and col-
laboration are important processes to consider. In
cooperation, the goal of each agent is the same,
but their interests are individual. On the contrary, in
collaboration, people come together for a common
interest and the same goal. In an orchestra, for exam-
ple, the musicians collaborate to play a symphony
[39]. They are coordinated through scores, which
have been previously coordinated by a composer,
and a conductor at performance time [39]. Collabo-
ration between humans and increasingly autonomous
systems as teammates in uncertain dynamic environ-
ments consists of highly interdependent activities. On
both the human and machine sides, training for col-
laboration is a key issue. Driskell and Salas showed
experimentally that members of a collectively ori-
ented team are more likely to be attentive to the
input of other team members and to improve their
performance during team interaction than egocentric
members [56]. The question now applies to collab-
oration between pilots and virtual assistants. Studies
by Salas et al. suggest that team training interventions
are a viable approach that organizations can take to
improve team outcomes [50].

This article focuses on a systemic and orga-
nizational (i.e., multi-agent) view of trust and
collaboration [51, 52]. Huang at al. have recently
discussed trust as a distributed dynamic feature “that
involves all relevant stakeholders and the interactions
among these entities” [49]. However, the distributed
dynamic team trust (D2T2) framework and potential
measures proposed are not integrated in an articu-



526 G.A. Boy and C. Morel / The machine as a partner: Human-machine teaming design using the PRODEC method

lated method such as PRODEC. Indeed, PRODEC is
a scenario-based design method that articulates com-
bined systems of systems procedural and declarative
analyses. Despite the typical development of scaled
worlds [57-59] and synthetic task environments [50],
there is still a strong need for the development of an
approach that articulates procedural scenario-based
design and declarative homogeneous systemic repre-
sentation of humans and machines leading to flexible
design and operations. This is precisely the objective
of the PRODEC method. More concretely, a major
question that was raised during the MOHICAN study
was, “can FlexTech resources improve shared cogni-
tion and trust?”

Using PRODEC in the MOHICAN project enabled
us to become familiar with what evaluation of
HMT performance could be (Fig. 8), in terms of
trust and collaboration, in a combat aircraft cockpit
equipped with a virtual assistant (VA). HMT perfor-
mance can be assessed using the derived multi-agent
model by defining high-level meaningful metrics Tk,
such as “operational performance,” “trust” and “col-
laboration.” Operational performance is a generic
high-level metric that measures the distance between
an expected performance (i.e., prescribed task) and
effective performance (i.e., activity). For example, a
flight trajectory can be the prescribed task that defines
the expected performance, and the actual trajectory
resulting from a pilot’s flying activity is the effective
performance. When the distance between the two tra-
jectories is lower than an appropriate threshold, the
flightis perfect. However, when this distance is higher
than this threshold, a discrepancy should be analyzed
and understood. PRODEC knowledge base generated
during the analytical phase helps to find out why.
Obviously, for example, air force operational perfor-
mance is scanned through task achievement, risk, and
resources management.

{Tk} can be derived from HMT criteria {Cj},
such as usability and explainability on the virtual
assistant side, as well as workload and stress on
the human side. Therefore, relationships, such as
Tk=fk ({Cj}), can be derived based on the domain
ontology. On more step is necessary to complete
the performance measurement model. We need to
get physical and cognitive low-level measures {mi}
through methods and tools, such as eye tracking and
electrocardiograms (objective measures), as well as
subjective scale assessment (subjective measures).
Therefore, relationships, such as Cj=gj ({mi}), can
be derived based on human-centered design knowl-
edge and experience.

In the MOHICAN project, performance criteria
{Cj} and measures {mi} of trust and collaboration
were selected based on different characteristics: rele-
vance; validity (meaning and content); measurability;
and ease of implementation. All these criteria were
then iteratively developed in human-in-the-loop sim-
ulations.

Most of the criteria were measured subjectively
using methods such as self-confrontation interviews,
post-test interviews and standardized questionnaires,
such as relevance (added value for the pilot), trans-
parency (composed of two sub-criteria: perception
of information and comprehension of information),
flexibility/adaptability (tolerance to the pilot’s errors,
to his actions/manipulations), usability, lack of dis-
comfort, and so on. The challenge was to find criteria
that could be based on objective measures. The
following is a non-exhaustive list of operational per-
formance, trust and collaboration criteria that have
been successfully used in MOHICAN:

e Effectiveness criterion, evaluated according to
the following measures:

o Operational performance measurement by
expert pilots. The performance model is
based on the analysis of simulator data
categorized according to three indicators:
task completion (i.e., did the crew suc-
cessfully complete the assigned mission?);
resource consumption (i.e., did the crew
meet resource management guidelines, e.g.,
fuel management, time management?); risk
management (i.e., did the crew maintain an
appropriate level of safety relative to the
level of risk of the mission, e.g., proximity
to the adversary?).

o Number and type of interaction between
the virtual assistant and the pilot for each
subtask. We determined if the informa-
tion transmitted by the virtual assistant was
effectively processed by the pilot by using
an eye-tracker (i.e., analysis pilot’s actions
in the simulator, double check, verbaliza-
tion, and so on).

e Efficiency criterion. The measure used was the
total time of the interaction between the pilot and
the virtual assistant (reaction time, interaction
processing in seconds). Raw data provided by
the flight simulator was used for this purpose.

e Reliability/Robustness criterion. This criterion
was analyzed by identifying potential bugs
and/or functional defects of the virtual assistant.
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Fig. 8. Methodology for performance assessment of a multi-agent
system.

e Situation Awareness/Mental Workload. Mea-
suring teaming performance only makes sense
in a specific context. This notion of con-
text is difficult to formalize. The way we
attempted to iteratively formalize context was
by clustering the various operational sequences
(using BPMN), expert air-combat knowledge
elicitation, as well as pilot’s activity and simula-
tion context data acquisition and interpretation,
which enabled the definition of an index evalu-
ating pilot’s theoretical workload in real time. It
is interesting to mention that heart rate measure-
ments (captured during the simulation activity)
overlapped very significantly data resulting from
this index.

Using PRODEC in the MOHICAN project enabled
us to identify trust/distrust and collaboration emer-
gent behavior and properties during HITLS. This
helped us redesign and recalibrate the air combat vir-
tual assistant as well as fighter pilot training (i.e.,
machine and human cognitive functions).

6. Other work, conclusion and perspectives

Bradshaw and colleagues proposed a teamwork-
centered approach to autonomy for extended human-
robot interaction in space applications [60]. They
advocated an effective balance between machine self-
sufficiency and self-determination, with the major
concern of mutual understanding of the human and
machine agents involved. The systemic interaction
models (SIMs) presented in this article encapsulate
these concerns [7, 28]. The systemic interaction mod-
els (SIM) presented in this article enable to model
ways interaction between humans and machines may
work.

The current strategy for building a resilient infras-
tructure is progressing too slowly to keep up with

the pace with change, as evidenced by the con-
tinuous stream of “shock” events [61]. Walker et
al. highlight the need to better anticipate evolving
threats and recognize new emerging vulnerabilities
in an increasingly interconnected world [62, 63].
Based on a robust systems framework (i.e., cognitive
and physical systems representations, scenario-based
design, human-in-the-loop simulations, formative
assessments, agile development using PRODEC), the
proposed approach allows for significant progress in
the strategic construction of sociotechnical systems,
such as future air combat systems.

A NASA Civil Aviation Committee recently
reviewed existing HMT research, identified stake-
holder community goals, examined relevant concepts
of operation, and defined a framework for establish-
ing a coordinated, comprehensive, and prioritized
research plan that would enable future applications
in the aviation marketplace [64]. This review effort
is intended to provide policy makers, engineers, and
researchers with useful guidance for directing and
coordinating HMT research activities.

As an extension, HMT research challenges
include:

e what kind of human-machine team conceptual
models should be further developed and vali-
dated; how can collective trust be appropriately
built, calibrated, and leveraged to establish the
roles of each agent or system, and the proper
authority sharing (i.e., who is in charge?). In
aerial combat for example, we should talk about
human-machine collaboration towards auton-
omy of sociotechnical systems at the right level
of granularity and move away from the idea that
a machine with artificial intelligence could be
autonomous; ethical questions are at stake (e.g.,
can we let a machine decide alone on some lethal
actions, especially when decisions are based on
inputs from Al algorithms such as imagery anal-
ysis?);

e how can a system of systems maintain conti-
nuity of operations in unexpected, uncertain,
unforeseen, and unpredictable situations — con-
tinuity is intimately related to resilience. If, for
example, the overall sociotechnical system is
partially or totally destroyed, how should its con-
stituents be able to accomplish their own mission
autonomously, where each system in the overall
system has its own raison d’étre and is therefore
capable of being either dependent, independent,
or interdependent on the others. The US Air
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Force has studied trust in a human-robot team
and highlights the need for both independent
and interdependent decision making in high-risk
dynamic environments [50, 65];

e how to measure and leverage the performance
of a human-machine team to enable continu-
ous improvement of system performance; and
how to certify partnered human-machine sys-
tems. Trust and collaboration metrics presented
in this article are valid for HMT in an air
combat system; they need to be expanded to
other applications, such as oil-and-gas teler-
obotic systems and online remote maintenance
of helicopter engine (work in progress in our
institute). Finally, trust and collaboration metrics
calibration remains a challenge that is currently
being addressed and requires more investigation.

These challenges should be viewed as incentives
for current and future HMT research plans. For exam-
ple, HSI of an air combat system can be viewed
from two coordinated perspectives to ensure overall
consistency, interoperability, and appropriate author-
ity sharing: (1) pilot-centric cockpits to improve the
fighter pilot’s working environment (e.g., cockpit
design for unmanned aerial vehicle or remote carrier
management); (2) C2-centric to improve the overall
combat cloud. In both perspectives, the HSI pro-
cess is implemented by developing scenarios and
human-in-the-loop simulations that uncover step-by-
step the emerging functions and structures of the
systems involved. These emergent properties reflect
the ability of systems to work together to achieve the
required operational capabilities in an SoS architec-
ture. McNeese at al. provided insights in HMT from a
coordination/collaboration of human-machine teams
perspective [66]. However, in real life and consid-
ering our HSI approach, industrial human-centered
processes are difficult to manage because systems
are often developed by different companies. For this
reason, it is essential to have a clear common under-
standing of what the different SoS actors should and
do, leading to common HSI principles that result in
consistent and coordinated system specifications.

HSI has become possible because human fac-
tors and ergonomics can be studied at the earliest
stages of engineering design using virtual proto-
types to understand human and system activity.
Scenario-based design and human-in-the-loop sim-
ulations have become mandatory, and the concept of
digital twins a reality. Consequently, advanced visu-
alization techniques and tools are needed to increase

physical and figurative tangibility [7, 8, 19]. For
example, several alternatives of the future combat
cloud could be compared virtually and progressively
“tangibilized,” to promote the right easily understand-
able information at the right time and place.

On the collaborative side, people learn from each
other, and learning is about working together enough
to ensure that teamwork considers the identity of the
other partner. Intersubjectivity is a matter of human
maturity (maturity of the practices involved), defined
by Human Readiness Levels (HRLs) [67, 68], and not
just technological maturity, measured by Technology
Readiness Levels (TRLs). Indeed, autonomy is a mat-
ter of technology, organization, and people maturity
(see the TOP [Technologies, Organizations, and Peo-
ple] model presented by Boy [39]). Organizational (or
societal) maturity requires the definition of appropri-
ate models leading to organizational readiness levels
(ORL) [69].

Finally, we must continue to analyze and better
understand the issues of trust and collaboration, never
forgetting that any sociotechnical system evolves
over time (i.e., functions and structures can be
changed, removed and/or added based on experience,
changing needs and operational risks). Therefore, the
flexibility of the corresponding system of systems
must be a constant concern.

Acknowledgment

The authors greatly thank Synapse Defense for
their expertise on the MOHICAN project that was
supported by the French Directorate General of
Armaments (DGA) Man-Machine Teaming (MMT)
program managed by Thales and Dassault Aviation.

Conflict of interest
None to report.
References

[1] Lyons JB, Sycara K, Lewis M, Capiola A.
Human-autonomy teaming: Definitions, debates, and direc-
tions. Frontiers in Psychology — Organizational Psychology.
2021. https://doi.org/10.3389/fpsyg.2021.589585.

[2] Kanaan M. T-Minus Al — Humanity’s Countdown to Arti-
ficial Intelligence and the New Pursuit of Global Power.
BenBella Books, Inc., Dallas, Texas, USA, 2020. ISBN
978-1-948836-94-4.

[3] NASEM. Human-AlI Teaming: State of the Art and Research
Needs. National Academies of Sciences, Engineering, and
Medicine. Washington, DC, USA: The National Academies
Press; 2021. https://doi.org/10.17226/26355.


https://doi.org/10.3389/fpsyg.2021.589585
https://doi.org/10.17226/26355

[4]

(3]

(6]
(71
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

G.A. Boy and C. Morel / The machine as a partner: Human-machine teaming design using the PRODEC method S29

Pappalardo D. Connected aerial collaborative combat,
autonomy, and human-machine hybridization: Towards a
winged “Centaur Warrior”? In French, «Combat collaboratif
aérien connecté, autonomie et hybridation Homme-
Machine: Vers un “Guerrier Centaure”ailé?». DSI Journal.
2019;139:70-5.

Torkaman J, Batcha AS, Elbaz K, Kiss DM, Doule O,
Boy GA. Cognitive Function Analysis for Human Space-
flight Cockpits with Particular Emphasis on Microgravity
Operations. Proceedings of AIAA SPACE 2016, Long
Beach, California; 2016. https://doi.org/10.2514/6.2016-
5345.

Minsky M. The Society of Mind. New York: Simon &
Schuster. ISBN 0-671-60740-5; 1986.

Boy GA. Human Systems Integration: From Virtual to tan-
gible. CRC Taylor & Francis Press, Miami, FL, USA; 2020.
Boy GA. Design for Flexibility - A Human Systems Inte-
gration Approach. Springer Nature, Switzerland. ISBN:
978-3-030-76391-6; 2021.

Fong T. Autonomous Systems — NASA Capability
Overview; 2018. Available from: URL: https://www.nasa.
gov/sites/default/files/atoms/files/nac_tie_aug2018_tfong_ta
gged.pdf.

Parasuraman R, Sheridan TB, Wickens CD. A model for
types and levels of human interaction with automation. In:
IEEE Transactions on Systems, Man, and Cybernetics — Part
A: Systems and Humans. 2000;30(3):286-97.

Sheridan TB, Verplank WL. Human and computer control
of undersea teleoperators. Technical Report, Man-Machine
Systems Laboratory, Department of Mechanical Engineer-
ing, Massachusetts Institute of Technology, Cambridge,
MA, USA; 1978.

Hancock PA. Imposing limits on autonomous systems.
Ergonomics. 2017;60/2:284-91.

Boy GA, Masson D, Durnerin E, Morel C. Human
Systems Integration of Increasingly Autonomous Sys-
tems using PRODEC Methodology. FlexTech work-
in-progress technical report. Available upon request,
guy-andre.boy @centralesupelec.fr.

Lorente Q, Villeneuve E, Merlo C, Boy GA, Thermy F.
Development of a digital twin for collaborative decision-
making, based on a multi-agent system: Application
to prescriptive maintenance. Proceedings of INCOSE
HSI2021 International Conference. Wiley Digital Library;
2021.

Norman DA, Stappers PJ. DesignX: Design and
complex sociotechnical systems. She Ji: Journal of
Design, Economics, and Innovation. 2016;1(2). http://dx.
doi.org/10.1016/j.sheji.2016.01.002.

Hutchins E. Cognition in the wild. Cambridge, Mass.: MIT
Press (2), 1995. ISBN 978-0-262-58146-2.

Ferber J. Multi-Agent Systems: An Introduction to Dis-
tributed Artificial Intelligence. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA., 1999.

Fong T, Steinfeld A, Kaber G, Lewis M, Scholtz J, Schultz
A, Goodrich M. Common Metrics for Human-Robot Inter-
action. HRI’06, Salt Lake City, Utah, USA, 2006.

Boy GA. Tangible Interactive Systems. Springer, UK, 2016.
Boy GA, Grote G. Authority in Increasingly Complex
Human and Machine Collaborative Systems: Application to
the Future Air Traffic Management Construction. In the Pro-
ceedings of the 2009 International Ergonomics Association
World Congress, Beijing, China., 2009.

Grudin J. Why CSCW applications fail: Problems in
the design and evaluation of organizational interfaces.

[22]

[23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

[31]

(36]

[37]

CSCW ’88: Proceedings of the 1988 ACM conference on
Computer-supported cooperative work, 1988, pp. 85-93.
https://doi.org/10.1145/62266.62273. ACM 0-89791-282-
9/88/0085.

French B, Duenser A, Heathcote A. Trust in Automation
— A Literature Review. CSIRO Report EP184082. CSIRO,
Australia; 2018.

INCOSE. Systems engineering definition, 2022. Available
from: URL https://www.incose.org/about-systems-enginee
ring/system-and-se-definition/systems-engineering-definiti
on.

INCOSE. Systems Engineering Vision 2035, 2022. Avail-
able from: URL: https://www.incose.org/docs/default-
source/se-vision/incose-se-vision-2035.pdf?sfvrsn=e32063
c7.22.

Boy GA. Model-Based Human Systems Integration. In the
Handbook of Model-Based Systems Engineering, Madni
AM, Augustine N, (Eds.). Springer Nature, Switzerland,
2022.

McDermott T, DeLaurentis D, Beling P, Blackburn M,
Bone M. AI4SE and SE4AIl: A Research Roadmap.
INCOSE Insight. March issue; 2020. DOI 10.1002/inst.
12278.

Soudain G, Triboulet F, Leroy A. EASA Concept
paper First usable guidance for level 1 Machine
Learning Applications. European Union Aviation Safety
Agency Technical Report; 2021. Available from: URL:
https://www.easa.europa.eu/downloads/134357/en

Boy GA. Cross-Fertilization of Human-Systems Integration
and Artificial Intelligence: Looking for Systemic Flexibility.
Proceedings of AI4SE 2019, First Workshop on the appli-
cation of Artificial Intelligence for Systems Engineering.
Madrid, Spain; 2019.

Minsky M. The Society of Mind. New York: Simon &
Schuster. ISBN 0-671-60740-5; 1986.

Scharre P. Army of none: Autonomous weapons and the
future of war. First edition. New York: W. W. Norton &
Company; 2018.

Pappalardo D. Connected aerial collaborative combat,
autonomy, and human-machine hybridization: Towards a
winged “Centaur Warrior”? In French, «Combat collaboratif
aérien connecté, autonomie et hybridation Homme-
Machine: Vers un “Guerrier Centaure” ailé?». DSI Journal.
2019;139:70-5.

ISO/IEC 15288. Systems Engineering — system life cycle
processes. IEEE Standard, International Organization for
Standardization, JTC1/SC7; 2015.

de Rosnay J. Le Macroscope, Vers une vision globale. Seuil
- Points Essais, Paris; 1977.

Le Moigne JL. La modélisation des systemes complexes.
Dunod, Paris; 1990.

Boy GA. Cognitive Function Analysis. Contempo-
rary Studies in Cognitive Science and Technology
Series, Ablex-Praeger Press, USA; 1998. Available
from: URL: https://www.amazon.com/Cognitive-Function-
Analysis-Contemporary-Technology/dp/1567503772.

Boy GA, Ferro D. Using Cognitive Function Analysis
to Prevent Controlled Flight into Terrain. Chapter of the
Human Factors and Flight Deck Design, Book. Don Harris
(Ed.), Ashgate, UK; 2003.

Roth EM, Sushereba C, Militello J, Diiulio J, Ernst
K. Function allocation considerations in the era of
human autonomy teaming. Journal of Cognitive Engi-
neering and Decision Making. 2019;13(4):199-220. DOI:
10.1177/1555343419878038.


https://doi.org/10.2514/6.2016-5345
https://www.nasa.gov/sites/default/files/atoms/files/nac_tie_aug2018_tfong_tagged.pdf
http://dx.doi.org/10.1016/j.sheji.2016.01.002
https://doi.org/10.1145/62266.62273
https://www.incose.org/about-systems-engineering/system-and-se-definition/systems-engineering-definition
https://www.incose.org/docs/default-source/se-vision/incose-se-vision-2035.pdf?sfvrsn=e32063c7_2
https://www.easa.europa.eu/downloads/134357/en
https://www.amazon.com/Cognitive-Function-Analysis-Contemporary-Technology/dp/1567503772

S30

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

G.A. Boy and C. Morel / The machine as a partner: Human-machine teaming design using the PRODEC method

Fitts PM. Human engineering for an effective air naviga-
tion and traffic control system. National Research Council,
Washington, DC, USA, 1951.

Boy GA. Orchestrating Human-Cantered Design. Springer,
UK, 2013.

Boy GA. Dealing with the Unexpected in our Com-
plex Sociotechnical World. Proceedings of the 12th
IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design,
and Evaluation of Human-Machine Systems. Las Vegas,
Nevada, USA; 2013. Also, Chapter in Risk Management
in Life-Critical Systems, Millot P, Boy GA, Wiley.
Endsley MR. Situation awareness in future autonomous
vehicles: Beware the unexpected. Proceedings of the 20th
Congress of the International Ergonomics Association. Flo-
rence, Italy, Springer Nature, Switzerland, 2018.

Endsley MR. Autonomous Horizon: System Autonomy in
the Air Force — A Path to the Future. Volume 1: Human-
Autonomy Teaming. Technical Report AF/ST TR 15-01;
2015. DOI 10.13140/RG.2.1.1164.2003.

Rosson MB, Carroll JM. Scenario-based design. Chapter
in Human Computer Interaction, CRC Press, eBook ISBN
9780429139390; 2009.

White SA, Bock C. BPMN 2.0 Handbook Second Edition:
Methods, Concepts, Case Studies, and Standards in Busi-
ness Process Management Notation. Future Strategies Inc.
ISBN 978-0-9849764-0-9; 2011.

Boy GA. The group elicitation method: An introduction.
In International Conference on Knowledge Engineering
and Knowledge Management, Springer, Berlin, Heidelberg;
1996, pp. 290-305.

Damacharla P, Javaid AY, Gallimore JJ, Devabhaktuni VK.
Common metrics to benchmark Human-Machine Teams
(HMT): A review. IEEE Access. 2018;6:38637-55. DOI:
10.1109/ACCESS.2018.2853560.

Camara Dit Pinto S, Masson D, Villeneuve E, Boy GA,
Urfels L. From requirements to prototyping: Application of
human systems integration methodology to digital twin. In
the Proceedings of the International Conference on Engi-
neering Design, ICED; 2021, 16-20 August Gothenburg.
Hardin R. Trust. Cambridge, UK: Polity; 2006.

Huang L, Cooke NJ, Gutzwiller R, Berman S, Choou E,
Demir M, Wenlong Z. Distributed Dynamic Team Trust
in Human, Artificial Intelligence, and Robot Teaming.
Ed. Lyons J, Trust in Human-Robot Interaction. Aca-
demic Press, Elsevier; 2020, pp. 301-19. https://doi.org/
10.1016/B978-0-12-819472-0.00013-7

Salas E, Cooke NJ, Rosen MA. On teams, team-
work, and team performance: Discoveries and develop-
ments. Human Factors. 2008;50(3):540-7. DOI 10.1518/
001872008X288457.

Castelfranchi C, Falcone R. Trust is much more than
subjective probability: Mental components and sources
of trust. In Proceedings of the 33rd Hawaii Interna-
tional Conference on System Sciences, 2000, pp. 1-10.
https://doi.org/10.1109/HICSS.2000.926815

Mayer RC, Davis JH, Schoorman FD. An integrative model
of organizational trust. The Academy of Management
Review. 1995;20:709. https://doi.org/10.2307/258792.
Atkinson D. Human-Machine Trust. Invited speech at
IHMC (Florida Institute for Human and Machine Cogni-
tion), 2012.

Klein G, Woods DD, Bradshaw JM, Hoffman RR, Feltovich
PJ. Ten challenges for making automation a “team player”
in joint human-agent activity. IEEE Intelligent Systems.
2004;91-95.

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Boyd JR. Destruction and Creation. U.S. Army Command
and General Staff College; 1976.

Driskell JE, Salas E. Collective Behavior and Team Perfor-
mance. Human Factors. 1992;34(3):277-88.

Cooke N, Shope S. Designing a synthetic task environment.
In Schiflett S, Elliot L, Salas E, Coovert D, (Eds.), Scaled
Worlds: Development, Validation, and Application. Surrey:
Ashgate; 2004, pp. 263-78.

Corral CC, Tatapudi KS, Buchanan V, Huang L, Cooke NJ.
Building a synthetic task environment to support artificial
social intelligence research. Proceedings of the 2021 HFES
65th International Annual Meeting. 2021;65(1):660-4. DOI:
10.1177/1071181321651354a.

Schiflett SG, Elliott LR, Coovert MD, Salas E. Scaled
Worlds: Development, Validation, and Applications. Ash-
gate, Surrey, England; 2004.

Bradshaw JM, et al. Teamwork-centered autonomy for
extended human-agent interaction in space applications.
AAAI2004 Spring Symposium Proceedings, Stanford, CA,
USA; 2004, pp. 22-4.

Woods DD, Alderson DL. Progress toward Resilient Infras-
tructures: Are we falling behind the pace of events and
changing threats? Journal of Critical Infrastructure Policy.
2021;2(2):Fall / Winter. Strategic Perspectives.

Walker GH, Stanton NA, Salmon PM, Jenkins DP. A
review of sociotechnical systems theory: A classic concept
for command-and-control paradigms. Theoretical Issues in
Ergonomics Science. 2008;9:479-99.

Walker GH, Stanton NA, Salmon PM, Jenkins DP, Raf-
ferty LA. Translating concepts of complexity to the field
of ergonomics. Ergonomics. 2010;53:1175-86.

Holbrook JB, Prinzel LJ, Chancey ET, Shively RJ, Feary
MS, Dao QV, Ballin MG, Teubert C. Enabling Urban Air
Mobility: Human-Autonomy Teaming Research Challenges
and Recommendations. AIAA Aviation Forum (virtual
event), 2020.

Schaefer KE, Hill SG, Jentsch FG. Trust in Human-
Autonomy Teaming: A Review of Trust Research from
the US Army Research Laboratory Robotics Collabora-
tive Technology Alliance. Springer International Publishing
AG, part of Springer Nature (outside the USA), Chen
J, (Ed.): AHFE 2018, AISC 784; 2019, pp. 102-14.
https://doi.org/10.1007/978-3-319-94346-6_10.

McNeese NJ, Demir M, Cooke NJ, Myers C. Team-
ing with a synthetic teammate: Insights into human-
autonomy teaming. Human Factors. 2018;60:262-73.
https://doi.org/10.1177/0018720817743223.

Endsley MR. Human readiness levels: Linking S&T
to acquisition [Plenary address]. National Defense
Industrial Association Human Systems Conference,
Alexandria, VA, USA; 2015. Available from: URL: https://
ndiastorage.blob.core.usgovcloudapi.net/ndia/2015/human/
WedENDSLEY.pdf

Salazar G, See JE, Handley HAH, Craft R. Under-
standing human readiness levels. Proceedings of the
Human Factors and Ergonomics Society Annual Meeting.
2021;64(1):1765-9. https://doi.org/10.1177/10711813206
41427.

Boy GA. Socioergonomics: A few clarifications on the
Technology-Organizations-People Tryptic. Proceedings of
INCOSE HSI2021 International Conference, INCOSE, San
Diego, CA, USA, 2021.


https://doi.org/10.1016/B978-0-12-819472-0.00013-7
https://doi.org/10.1109/HICSS.2000.926815
https://doi.org/10.2307/258792
https://doi.org/10.1007/978-3-319-94346-6_10
https://doi.org/10.1177/0018720817743223
https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2015/human/WedENDSLEY.pdf
https://doi.org/10.1177/1071181320641427

