Table S1. Quality assessment checklist for prevalence studies (adapted from Hoy et al. [24])

Name of author(s): Year of publicaton: Study title:			
Risk of bias items	Risk of bias levels	Poin	red
1. Was the study's target population a close representation of the national population in relation to relevant variablel, e.g. age, sex, occupation?	Yes (LOW RISK): The study`s target population was a alos representation of the national population. & 0 & 0 \\ \hline & No (HIGH RISK): The study`s target population was clearly NOT representative of the national population.	1	1
	Yes (LOW RISK): The sampling frame was a true or close representation of the target population.	0	0
	No (HIGH RISK): The sampling frame was NOT a true or close representation of the target population.	1	1
3. Was some form of random selection used to select the sample, OR, was a census undertaken?	Yes (LOW RISK): A census was undertaken, OR, some form of random slection was used to select the sample (e.g. simple random sampling, stratified random sampling, cluster sampling, systematic sampling).	0	0
	No (HIGH RISK): A census was NOT undertaken, AND some form of random slection was NOT used to select the sample.	1	1
4. Was the likelihood of non-response bias minimal?	Yes (LOW RISK): The response rate for the study was $\geq 75 \%$, OR, an analysis was performed that showed no significant difference in relevant demographic characteristics between responders and nonresponders.	0	0
	No (HIGH RISK): The response rate was <75\%, and if any analysis comparing responders and non-responders was done, it showed a significant difference in relevant demographic characteristics between responders and non-responders.	1	1
5. Were data collected directly from the subjects (as opposed to a proxy)?	Yes (LOW RISK): All data were collected directly from the subjects.	0	0
	No (HIGH RISK): In some instances, data were collected from a proxy.		
		1	1
6. Was an acceptable case definition used in the study?	Yes (LOW RISK): An acceptable case definition was used.	0	0
	No (HIGH RISK): An acceptable case definition was NOT used.	1	1
7. Was the study instrument that measured the parameter of interest (e.g. prevalence of low back pain) shown to have reliability and validity (if necessary)?	Yes (LOW RISK): The study instrument had been shown to have reliability and validity (if this was necessary), e.g. test-re- test, piloting, validation in a previous study, etc.	0	0
	No (HIGH RISK): The study instrument had NOT been shown to have reliability or validity (if this was necessary).	1	1
8. Was the same mode of data collection used for all subjects?	Yes (LOW RISK): The same mode of data collection was used for all subjects.	0	0
	No (HIGH RISK): The same mode of data collection was NOT used for all subjects.	1	1
9. Were the numerator(s) and denominator(s) for the parameter of interest appropriate?	Yes (LOW RISK): The paper presented appropriate numerator(s) AND denominator(s) for the parameter of interest (e.g. the prevalence of low back pain).	0	--
	No (HIGH RISK): The paper did present numerator(s) AND denominator(s) for the parameter of interest but one or more of these were inappropriate.	1	--
10. Summary on the overall risk of study bias	LOW RISK	0-3	0-2
	MODERATE RISK	4-6	3-5
	HIGH RISK	7-9	6-8

Table S2. Basic characteristics of cross-sectional studies with low and moderate quality comparing chronic physical disorders among self-employed individuals (s-empl) with that of employees (empl)

Author, publication date	Country/ region of study	Sample size, Female	Age [Mean(SD) or range]	Source population	Occupational groups	Disease outcomes: assessment tools
EUROPE						
Atherton 2007	Great Britain	$\begin{gathered} 8,952, \\ \text { n.r. } \end{gathered}$	45 y	Perinatal mortality register	s-empl (without personnel) vs s-empl (with personnel) vs empl (managerials/professionals)	1. Blood pressure: three readings 2. Pain: American College of Rheumatology criteria
$\begin{gathered} \hline \text { Nikiforow } \\ 1978 \end{gathered}$	Finland	$\begin{gathered} 3,067 \\ 38.7 \% \end{gathered}$	$\begin{aligned} & 79.5 \text { y (rural), } \\ & 74.0 \text { y (urban) } \end{aligned}$	Every inhabitant of Oulu and Yli-li	s-empl vs empl	Absence because of headache: New questionnaire developed for the study
$\begin{gathered} \text { Rossignol } \\ 2005 \end{gathered}$	Canada	$\begin{aligned} & 2,834, \\ & 45.1 \% \end{aligned}$	61.8 y (9.3)	Network of primary care all across France in cooperation with physicians	s-empl vs. empl	Osteoarthritis: a) Lequesne questionnaire, b) Dreiser questionnaire

Table S3. Results of cross-sectional studies with low and moderate quality comparing chronic physical disorders between self-employed individuals (s-empl) with that of employees (empl)

Author, Publication date	Results
Heart diseases and stroke	
$\begin{aligned} & \text { Min } \\ & 2019 \end{aligned}$	Stroke s-empl (small employer) vs s-empl (middle to large employer) vs empl [\%]: 0.58 vs. 0.37 vs. 0.14 * Myocardial infarction s-empl(small employer) vs s-empl(middle to large employer) vs empl [\%]: 0.61 vs. 0.62 vs. 0.22 * Angina s-empl (small employer) vs s-empl (middle to large employer) vs empl [\%]: 0.80 vs. 0.75 vs. 0.26 *
Non-musculoskeletal disease	
$\begin{aligned} & \text { Min } \\ & 2019 \end{aligned}$	Hypertension s-empl (small employer) vs s-empl (middle to large employer) vs empl [\%] 11.76 vs. 11.79 vs. 6.70 * Diabetes s-empl (small employer) vs s-empl (middle to large employer) vs empl [\%]: 5.29 vs. 5.11 vs. 2.24 * Dyslipidemia s-empl (small employer) vs s-empl (middle to large employer) vs empl [\%]: 3.79 vs. 5.07 vs. 2.83 *
Atherton 2007	Chronic widespread pain s-empl vs empl (managerial/professional, ref.) [\%, OR(95\%CI)]: male: 16.3 vs $8.1 ; 2.19$ (1.64, 2.92); female: 16.5 vs 9.4; 1.90 (1.31, 2.76)
Lewin-Epstein 1991	HDL s-empl vs empl [\%, effect of employment status] (\%): $17.6(5.2)$ vs 20.0(7.0), $b=-2.09$ *
$\begin{aligned} & \text { Nikiforow } \\ & 1978 \end{aligned}$	Headache (absence from work) s-empl vs empl [\%]: all: 22 vs 12 ; rural: 23 vs 11 ; urban: 17 vs 13
Musculoskeletal diseases	
Fischer 2012	Pain intensity s-empl vs empl [Mean(SD)]: after 1 h solo interpreting: $5.4(2.1)$ vs $5.4(2.4)$ after 1day team interpreting: 5.6(2.4) vs $5.5(2.3)$ at time filling out the survey: $3.4(2.3)$ vs $3.7(2.4)$
Rossignol 2005	Osteoarthritis s-empl vs empl (construction, mechanics, clothing and food sector) [RR(CI95\%)]: Male: $2.9(2.6-3.3)$ vs $1.9(1.7-2.2)$, female: $5.0(3.9-6.3)$ vs $3.2(2.5-4.1)$

* $p \leq 0.05$, vs = versus, $O R=$ odds ratio, $C l=$ confidence interval, $S D=$ standard deviation, $R R=$ rate ratio

