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1. Introduction

As noted by Llorens et al., the early studies con-
ducted in the field of system identification related
to time series were based on the scientific papers of
K.F. Gauss “Theoria motus corporum coelestium in
sectionibus conicis solem ambientium” (1809) and
G.E. Fisher’s “On an Absolute Criterion for Fitting
Frequency Curves” (1912), and were called statistical
estimations [1]. Most of the identification procedures
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were based on observing the reactions of controlled
objects with the presence of some control actions
and, depending on what type of information about the
object was used, identification methods were divided
into frequency and time [2]. They represent a descrip-
tion of a controlled system in the form of a state
space, which made it possible to work with multi-
dimensional systems [3].

System identification methods for control prob-
lems have been developed and described as a
subspace method based on the use of projections
in Euclidean space, as well as a prediction error
method based on minimising a criterion that depends
on model parameters [4]. Many papers are devoted
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to the search for a model of the object under study in
the state space, which has the smallest order of the
state vector, based on information about the impulse
transient response [5]. This problem, in the presence
of random process realisation, where the Markov
model is formed, became the basis of the subspace
method [6]. Various works present a maximum like-
lihood method developed by time series specialists to
estimate model parameters in the form of difference
equations [7]. These models, known as autoregressive
moving average and autoregressive moving average
with input, formed the basis for the prediction error
method [8]. The use of identification methods was
described from the moment the collection of infor-
mation about an object began to the receipt and
verification of the model [9].

When solving the identification problem, the struc-
ture of the system and the class of models to which it
belongs are considered known [10]. A priori informa-
tion about the system is quite wide [11]. A wider class
of different identification methods was considered
and material on the sensitivity of system characteris-
tics to identification errors was presented [12]. All
papers considered are related to three well-known
problems of signal theory [13]: identification prob-
lem, when, based on known signals at the input and
output of the system, a conclusion is made about
the composition of the system and its characteris-
tics; a control task when the characteristics of the
system and the input signal are known and the law
of change of the signal at the output of the system
or such an input signal that at the output brings the
system to a given state is determined; measurement
task when the original signal and system character-
istics are known and the characteristics of the input
signal are determined. The methods are applicable to
sequential parameter identification [14].

The relationship between the forms of representa-
tion of random processes in state variables and using
the covariance function is often recorded [15]. Also,
the foundation for the study of dynamical systems has
been laid [16–18]. The “input-state-output” approach
differs from the conventional “input-output” structure
in that definitions are made without distinguishing a
priori between causes (inputs) and effects (results)
[19]. The “input-state-output” structure acts as a spe-
cial type of system representation [20]. It has been
argued that this framework is much better suited
to provide a satisfactory conceptual framework for
modelling physical systems as the language of math-
ematical systems theory [21]. From this perspective,
various qualitative systemic properties are introduced

(such as linearity, time invariance, and the like) [22].
The results of the spatial representation of these sys-
tems are presented. These ideas became the basis for
the development of information technology for use
in continuous production.

2. Materials and methods

Management is understood as an organisational
activity that carries out management functions
for any work aimed at achieving certain goals.
The management process consists of analysing the
decision-making process on the most appropriate
actions in appropriate situations. The person in charge
makes decision by assessing the environment with
the help of information received from his sensory
organs, measuring instruments, other persons and
technical devices. In many cases, this information
is insufficient for an unambiguous assessment of
the situation. Then experience, knowledge, memory,
intuition are used. A remarkable property of a per-
son is the ability to make decisions in conditions of
significant uncertainty about the environment with
obtaining appropriate information. To carry out the
management functions, mathematical methods have
been developed that allow analysing existing types
of information, filtering out unnecessary information
and highlighting its most significant part, we should
use the necessary information to assess the situation
and develop recommendations that ensure the most
effective implementation of control objectives. The
choice of a model when solving control problems
and studying continuous processes is due to both
the conditions of implementation and requirements
of adequacy. In conditions of uncertainty, algorithms
and methods of information analysis of data from
various structures come to the fore, and information
analysis is an integral part of the identification system.

To solve the problem of control in conditions of
uncertainty, the methods of the adaptive systems the-
ory are used, which allow: to ensure high accuracy
of control with a significant change in the dynamic
properties of the object; optimise the operating modes
of the object in conditions of changes in its char-
acteristics; improve the reliability of the system,
unify individual control subsystems and their blocks;
reduce the development and debugging time of the
system. Adaptive methods are used to solve prob-
lems in which there is no information about the nature
and conditions of the object operation, as well as in
the case of impossibility or insufficiently complete
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formalisation of a priori data. In general, the process
of synthesising an adaptive system can be divided
into several stages. First, the goal of management
is formed and requirements are set for the struc-
ture of the mathematical model of the object. For
this, a priori and/or experimental information is used.
In a more general case, the synthesis of a system
is associated with solving the problem of structural
identification. At the second stage, the structure of the
control device is determined. Next, the algorithm for
adapting the controller parameters is selected. At the
final stage, the adopted algorithm is justified. Object
identification is reduced to determining the structure
and parameters of the model based on the observed
data (input and output of the object) and the avail-
able a priori information. All existing approaches
to identification are divided into two groups – sta-
tistical and multiple-functional (deterministic). The
indicated classes differ by taking account of the
nature of disturbances (noises) acting on the system
and by the estimates obtained. Despite the wide vari-
ety of algorithms and identification methods, there
are no procedures for regular synthesis of the model
structure, which is explained by the complexity and
variety of control objects, poor knowledge of the pro-
cesses occurring in the object.

3. Results and discussion

The set of dynamic processes in control objects can
be described using differential Equation (1) with one
input u and output y:

a0y
(m) + a1y

(m−1) + . . . + amy

= b0u
(k) + b1u

(k−1) + . . . + bku + ξ (1)

where ξ – random disturbance; a, b – weight coeffi-
cients of the differential equation.

From equation (1), we can go to the finite-
difference representation. Assuming t = n�t, where
n = 0, 1, ..., �t – data collection interval, and
introducing backward shift operator z – zy (n) =
y (n − 1), obtain (2):

Dy (z) y (n) = Du (z) u (n) + ξ (n) (2)

where Dy (z) = a0z
m + a1z

m−1 + . . . + am, Du (z)
= b0z

k + b1z
k−1 + . . . + bk.

If ξ (t) is a random sequence, then (2) is an
autoregression equation – moving average, and at
Du (z) = 1 – moving average model. In general, the
autoregression equation is a moving average with

dynamic specification for ξ (t) in space {U, Y} has the
form (3):

Y (t) =F (A, Y (τ1) , U (τ2) , ξ (τ3) ,

τi ∈ [
tτi , t

]
, i = 1, 3

)
(3)

where tτi ≥ t0.
From (3) it can be seen that the dynamic properties

of an object can be determined both by its internal
structure and by the dynamic properties of the input
U (t) and noise ξ (t). Equations (1, 2) can be written
in matrix form (in the form of state space). For linear
stationary plant, the equation in the state space has
the form (4):

Ẋ = AX + BU + ξ

Y = CX + DU + ζ
(4)

where X ∈ Rm – state vector; A ∈ Rm×m – state
matrix; U ∈ Rn×k – input vector; Y ∈ Rn – output
vector; B ∈ Rm×k, C ∈ Rn×m, D ∈ Rn×k; ζ ∈ Rn –
non-retentive vector of measurement errors; ξ ∈ Rm

– noise vector.
The first Equation in (4) is called the equation

of state, and the second is called the measurement
(observation) equation. In identification problems,
matrix D is usually equal to zero. Any object can be
characterised by a set of variables �u (t) ∈ U, arriving
at its input, and a set of variables �x (t) ∈ X, that are the
object’s response to the impact and reflect its state.
The object is immersed in an external environment,
the influence of which manifests itself in the form
of controlled ζ (t) ∈ � and uncontrolled ξ (t) ∈ �

disturbances and also affects its state. In identifica-
tion problems, disturbances that are controlled are
included in the input vector �u (t). Uncontrolled distur-
bances ξ (t) are manifested through the object output
�y (t) ∈ Y , that belongs to X and is only part of the
state vector, that is Y ⊆ X. The information space of
the object is represented in the form (5):

I = U × X × � × J × S (5)

where � = � × � – perturbation space; J – object
observation interval; S – space of system parameters
(6):

S ⊆ Rm × Rn (6)

K ⊆ Rn – space of structural features of the sys-
tem “object + environment”, K ⊆ S. The informative
space I in real conditions is incompletely observ-
able, therefore, it is covered by some information set
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and containing the sets U and X available for mea-
surement. In this case, the set I is a set of vectors
�u (t) ∈ U ⊂ U, �y (t) ∈ Y ⊆ X, observed on J (7):

Ie = {
U ∈ Rm, Y ∈ Rn|�u (t) , �y (t) , t ∈ J

}
(7)

Since the elements of I are obtained in the process
of measuring the observed state variables, the set I
contains only numerous images of the elements of
the spaces U and X. For a complete characteristic of
the object in the set I, a priori information is included,
therefore I is represented in the form (8):

I = {Ia, Ie} (8)

where Ia, Ie – a priori and experimental information,
respectively.

Information set I (8) is used to identify control
objects. The structure and properties of the set Ie

greatly influence the choice of the method for syn-
thesising the mathematical model and the type of the
parameter estimation algorithm used. The informa-
tion Ie has the form (7) and includes the results of
measurements of input and observed (initial) state
variables, as well as indirect parameters depending on
the output variables. Depending on the identification
problem being solved, the set Ie can have a different
structure. If the problem of one-time identification of
the control object is solved, then the measurement
process has a fixed end te, moreover te > t0, where t0
– the start time of observation. In this case, the infor-
mation Ie has the form (7) and is represented in the
form (9):

Ie (J) = {HU (J) , HY (J)} (9)

where HU (J) = [u (t0) , u (t1) , ..., u (te)] , HY (J) =[
y (t0) , y (t1) , ..., y (te)

]
– matrices of the corre-

sponding dimensions.
If the current identification is performed, then the

information Ie has the form (10):

Ie = {�u (t) , �y (t)} (10)

where t = to + (i − 1) τ, i = 1, 2, ..., t – current
moment in time; τ – data collection interval.

With the current identification, i grows indefinitely
with the growth of the object’s operation time Thus,
the set Ie in specific applications has a different form.
The information Ie contains data on the parameters
and characteristics of the object and the limits of their
measurement. Ie implicitly displays the constraints
on the parametric space of processes occurring in the
object. Therefore, the set Ie, having the form of a
digital array, can have a rather complex structure. The

element w (t) ∈ Ie can be represented as (11):

w (t) = wc (t) + wg (t) + wx (t) + ξ (t) (11)

where wc (t) – a constant or a function that changes
arbitrarily; wg (t) – harmonic function with a fixed
period; wx (t) – some process; ξ (t) – measurement
interference.

The component wc (t) reflects the main mode of
operation of the object, wg (t) – any periodic phe-
nomena and processes also associated with the main
process. Functions wx (t) and ξ (t) reflect the influ-
ence of various perturbations: wx (t) characterise
internal, and ξ (t) external influences. The set Ie will
not always have such a structure. Depending on the
properties of the object, some of the components of
w may be absent or have a more specific form, that
is, the function w (t) can be written in the form (12):

w (t) = ws (t) + ξ (t) (12)

where ws (t) – function that displays the structural
features of the object; ξ (t) – environment.

Processes ws (t) and ξ (t) can have both stochastic
and regular structures. In the case of regular structure,
various descriptions are used that allow an algorith-
mic representation. In the case of stochastic nature
of the processes ξ (t) various static and probabilistic
characteristics are used for presentation. A random
process is a change in a random variable over time.
Random processes include most of the processes
occurring in bioelectrical systems, like organism,
as well as interference that accompanies the trans-
mission of signals through neural communication
networks. Random processes can be continuous or
discrete, depending on which random variable is con-
tinuous or discrete in time. There are also several
methods for describing signals: signal values in the
time domain; signal values in the frequency domain;
representation of signals and interferences by orthog-
onal series.

Each time an experiment is carried out, the result is
a function defined over a time interval. It is necessary
to characterise the entire random signal (process).
There is one property that a task method must involve.
If we consider a number of points in time t1, t2, . . . , tn
on the interval of assigning processes, then they corre-
spond to n random variables of xt1, xt2, . . . , xtn. Any
complete task should be able to determine the over-
all probability density pxt1,xt2,...,xtn (X1, X2, ..., Xn).
In addition, it should allow to determine this density
for any set of points in time on a given interval (for
any finite n). Let us consider operations on a random
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process that can be studied without actually com-
pletely specifying the process. For such operations,
only a partial solution to the problem of the process
being analysed is required. A large number of par-
tial tasks are possible. The two most common ones
are: representing a process value at only one point in
time; presentation of process values by second points.
When applied at one point in time, only the first-
order probability density pxi (X) at a point in time t

is determined. It is a function of time. When defining
a process by its second moments, only the first and
second moments of the process are set. The process
mean value function is determined by the formula
(13):

mx (t) = E (xi) =
∞∫

−∞
Xipxi (Xi) dXi (13)

It is also a function of time. The correlation func-
tion is determined by the expression (14):

Rx (t, u) = E (xixu) = E (xixu)

=
∞∫

−∞

∞∫
−∞

XiXupxixu (Xi, Xu) dXidXu (14)

The covariance function is defined as follows (15):

Kx (t, u) = E {[xt − mx (t)] [xu − mx (u)]}
= Rx (t, u) − mx (t) mx (u) (15)

The partial process task is well suited to linear oper-
ations on random processes. The covariance function
has several useful properties (16). One of the prop-
erties is the symmetry property, which follows from
the definition (15):

Kx (t, u) = Kx (u, t) (16)

If we multiply the sample function x (t) by some
deterministic function f (t), integrable in a square,
and integrate on the interval [0, T], then we get a
random variable (17):

xj =
T∫
0
x (t) f (t) dt (17)

The average of this random variable is (18), and the
variance, after the introduction of expectation under
the integral sign, has the form (19):

E
(
xj

) = xj = E
T∫
0
x (t) f (t) dt =

T∫
0
mx (t) f (t) dt

(18)

σ2 (
xj

) =
T∫

0

T∫
0

f (t) Kx (t, u) f (u) dt du (19)

The variance must be greater than or equal to zero.
Thus (20) true for f (t) with a finite energy value. This
property is called inherent certainty. If inequality (20)
holds strictly for f (t) with nonzero finite energy, then
Kx (t, u) is positive definite.

T∫
0

T∫
0
f (t) Kx (t, u) f (u) dtdu ≥ 0 (20)

If the process is defined on an infinite interval and
its covariance function depends only on |t − u|, and
not on t oru separately, then the process is covariance-
stationary and can be written in the form (21):

Kx (t, u) = Kx (t − u) = Kx (τ) (21)

Similarly, if the correlation function depends only
on |t − u|, and the process is correlation-stationary,
and it can be written in the form (22):

Rx (t, u) = Rx (t − u) = Rx (τ) (22)

Consider Gaussian stochastic processes. Random
variables x1, x2, . . . , xN are jointly Gaussian if (23)
is a Gaussian random variable for any set gi:

y =
N∑

i=0

gixi (23)

If N – countable infinite, then it is necessary that
gi would be such that E

[
y2

]
< ∞. In a random pro-

cess, it is necessary to obtain a linear functional of
the random function. To do this, assume that x (t) is a
random process defined on a certain interval

[
Tα, Tβ

]
with a mean value of mx (t) and a covariance func-
tion Kx (t, u). If each linear functional of x (t) – is
a Gaussian random variable, then x (t) it is a Gaus-
sian random process. That is, if (24) and g (u) – any
function meeting the condition E

[
y2

]
< ∞, then for

x (u)) to be a Gaussian random process, in must be a
Gaussian random variable for each g (u) in the above
class.

y =
Tβ

∫
Tα

g (u) x (u) du (24)

The output quantity of a linear system is a given
linear functional. Let us denote the impulse response
– the output value at the moment of time t, caused
by the action on the input of a single impulse at the
moment of time u through h(t, u). If the input quantity
is equal to x (t) and is a sample function of a Gaussian
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6 Z.H. Tang et al. / Providing a system of continuous recovery during athletes’ rehabilitation

random process, then the output quantity y (t) is also a
sample function of a Gaussian random process. Thus
(25):

y (t) =
Tβ

∫
Tα

h (t, u) x (u) du, Tγ ≤ t ≤ T� (25)

where h (t, u) – impulse transient response with time-
varying parameters.

An interval
[
Tγ, T�

]
is the area where the function

y (t) is defined. Linear systems are characterised by
an impulse response h (t, u) Linear systems are char-
acterised by an impulse response h (τ) in the case
of time-constant parameters. A distinctive feature of
this description is that the input signal is considered
known over the interval −∞ < t < ∞. The impulse
response h (t, u) is simply a solution to a differential
equation where the input signal is a pulse at the point
in time u.

There are three solutions for describing systems
using differential equations. The first solution is
related to initial conditions and state variables when
considering dynamic systems. The state of the system
is defined as the minimum amount of information
regarding the influences of previous signals at the
input of the system, necessary to fully describe the
output signal at t ≥ 0. Variables containing this infor-
mation are state variables. If the state of the system
at the moment of time t0 and the input signal in the
interval from t0 to t1, are given, then both the initial
signal and the state of the system at the moment of
time t1 can be found. The second solution is reduced
to the implementation (or modelling) of the differ-
ential equation using an analogue calculator. It can
be thought of as a system consisting of integrators,
circuits with time-varying transmission coefficients,
adders and nonlinear inertialess transmissions of sig-
nals and organ states, combined in such a way as to
reproduce the required ratio between input and out-
put signals. The initial condition y (t0) acts here as a
bias at the output of the integrator. The offset output
voltage of the integrator is a system state variable.
The third solution relates to the issue of generating a
random process. If u (t) is a random process or y (t0)
is a random variable (or both of them are random),
then y (t) – is also a random process. Let us consider
a system described by a differential equation of the
form (26):

y(n) (t) + pn−1 (t) y(n−1) (t) + . . . + p0 (t) y (t)

= b0u (t) (26)

where y(n) (t) – n-th derivative of y (t); pi (t) – opera-
tor of differentiation; u (t) – signal at the system input;
b0 – weight coefficient.

To determine the solution of the n-th order
equation, it is necessary to know the value
y (t) , . . . y(n−1) (t) at the moment in time t0. The first
step in finding an analogue computer form imple-
mentation is to model the terms on the left side of this
equation. The next step is to combine these quantities
in a way that the specified equation is satisfied. The
differential equation determines the input voltage to
the integrator. We introduce the initial conditions by
setting certain offsets at the outputs of the integrator.
State variables are biased voltages at the output of the
integrator. It is easier to work with a first order vec-
tor differential equation than with a n-th order scalar
differential equation. Let there be given (27, 28):

x1 (t) = y (t)

x2 (t) = ẏ (t) = ẋ1 (t)
...

xn (t) = y(n−1) (t) = ẋn−1 (t)

(27)

ẋn (t) = yn (t) = −
n∑

k=1

pk−1y
(k−1) (t) + b0

= −
n∑

k=1

pk−1xk (t) + b0u (t) (28)

Denoting the system xi (t) by the column matrix,
we note that the scalar equation of the n-th order is
equivalent to the n-dimensional vector equation of
the first order (29):

dx (t)

dt
= ẋ (t) = Ax (t) + Bu (t) (29)

where A – system state matrix; B – matrix of control
(input).

The vector x (t) is called the state vector for a given
linear system (29) – the state equation of the system.
Any non-singular linear transformation of the vector
x (t) gives another state vector. The output voltage
y (t) is related to the state vector by equation (30):

y (t) = Cx (t) (30)

where C – measurement matrix.
Equation (30) is the initial equation of the system.

Equations (29) and (30) completely define the sys-
tem. For systems with time-varying parameters, as the
main representation, we consider vector Equations
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Fig. 1. Generation of two messages.

(31, 32):

dx (t)

dt
= A (t) x (t) + B (t) u (t) (31)

y (t) = C (t) x (t) (32)

where x (t) – state vector; A (t) , B (t) – variable matri-
ces of the differential equation; u (t) – system input
signal, white noise-type; C (t) – measurement matrix.

Equation (31) is the state equation of the sys-
tem, and (32) is the original equation of the system.
Using white noise as input (33) some non-stationary
stochastic processes can be simulated.

E [u (t) u (τ)] = qδ (t − τ) (33)

A non-stationary process can appear even when the
matrices A and B are constants, and x0 (t) – deter-
ministic value. Consider a system that generates two
initial messages y1 (t) and y2 (t) (Fig. 1).

The state of the first system is described by Equa-
tions (34, 35):

ẋ1 (t) = A1 (t) x1 (t) + B1 (t) u1 (t) (34)

y1 (t) = C1 (t) x1 (t) (35)

where x1 (t) – n-dimensional state vector.
The representation of the second system is similar

to the first and has the form (36, 37):

ẋ2 (t) = A2 (t) x2 (t) + B2 (t) u2 (t) (36)

y2 (t) = C2 (t) x2 (t) (37)

where x2 (t) – m-dimensional state vector.
The only vector system of equations with a two-

dimensional state vector is a more convenient way to
describe these two systems (38, 43):

x (t) =
[

x1 (t)

x2 (t)

]
, (38)

A (t) =
[

A1 (t) 0

0 A2 (t)

]
, (39)

B (t) =
[

B1 (t) 0

0 B2 (t)

]
, (40)

u (t) =
[

u1 (t)

u2 (t)

]
, (41)

C (t) =
[

C1 (t) 0

0 C2 (t)

]
, (42)

y (t) =
[

y1 (t)

y2 (t)

]
, (43)

The resulting differential equations have the form
(44, 45):

ẋ (t) = A (t) x (t) + B (t) u (t) (44)

y (t) = C (t) x (t) (45)

The exciting function is a vector. To simulate the
process, we assume that the exciting function is white
noise with a matrix covariance function (46):

E [u (t) u (τ)] = Qδ (t − τ) (46)

where Q – inherently definite matrix.
For random initial conditions, it is necessary to

specify the covariance function and the mean value
E [x (t0)] at the initial time moment t0 (47):

Kx (t0, t0) = E
[
x (t0) xT (t0)

]
(47)

It is possible to model related processes by replac-
ing the diagonal matrices in (44, 45), and (47) with
matrices of a general form. If Equation (44) is a homo-
geneous equation with constant coefficients, then (48)
with the initial condition x (t0).

x (t) = Ax (t) (48)
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If x (t) and A are scalars, then the solution has the
form (49):

x (t) = eA(t−t0)x (t0) (49)

For the vector case, it can be shown that (50), where
eAt is determined by the infinite series (51), where I

– identity matrix.

x (t) = eA(t−t0)x (t0) (50)

eAt = I + At + A2t2

2!
+ ... (51)

We denote the function eA(t−t0) by (52):

� (t − t0) = � (τ) (52)

The function � (t − t0) is the transition matrix of
the state of the system, which is defined as a function
of two variables � (t, t0), that satisfy the differential
equation (53) with an initial condition � (t0, t0) = I.

�̇ (t, t0) = A (t) � (t, t0) (53)

The solution at any moment of time has the form
(54):

x (t, t0) = � (t, t0) x (t0) (54)

For the inhomogeneous case, the general solution
contains a homogeneous and particular solution of
the form (55):

x (t) = � (t, t0) x (t0) +
t∫
t0

� (t, τ) B (τ) u (τ) dτ

(55)

Linear systems with time-varying parameters are
characterised by an impulse responseh (t, τ) provided
that the input quantity is known over the interval from
−∞ to t. Thus (56):

y (t) =
t∫

−∞
h (t, τ) u (τ) dτ (56)

In most cases, the influence of the initial condition
x (−∞) does not appear in (55), which means that it
can be taken equal to zero. Then we obtain (57):

y (t) = C (t)
t∫

−∞
� (t, τ) B (τ) u (τ) dτ (57)

Comparing (56) and (57), we obtain (58):

h (t, τ) =
{

C (t) � (t, τ) B (τ)

0npu ∂pysuxt
(58)

Matrices C (t) , � (t, τ) , B (τ) depend on the rep-
resentation of the system, but the matrix impulse
response is unique. Let us establish some statistical
properties of vector processes x (t) and y (t), provided
that u (t) is a sample function of a vector random
process of white noise-type (59):

E
[
u (t) uT (τ)

] = Qδ (t − τ) (59)

The cross-correlation between the state vector x (t)
of the system, excited by white noise u (t) with zero
mean, and the input quantity u (τ) equal to (60):

Kxu (t, τ) = E
[
x (t) uT (τ)

]
(60)

This discontinuous function has the form (61):

Kxu (t, τ) =

⎧⎪⎨
⎪⎩

0 τ > t

1
2B (t) Q τ = t

� (t, τ) B (τ) Q t0 < τ < t

(61)

Substituting (54) into definition (60), we obtain
(62):

Kxu (t, x)

= E

{[
� (t, t0) x (t0) +

t

∫
t0

� (t, α) B (α) u (α) dα

]
uT (τ)

}
(62)

where α – delay time.
Let us introduce the mathematical expectation

under the integral sign and assume that the initial
state x (t0) does not depend on u (τ) at τ > t0. Then
(63):

Kxu (t, τ) =
t∫
t0

� (t, α) B (α) E
[
u (α) uT (τ)

]
dα

=
t∫
t0

� (t, α) B (α) Qδ (α − τ) dα (63)

At τ > t the expression is equal to zero. If τ = t,
and the delta function is symmetric, since it is the
limit of the covariance function, then it is necessary
to take only half of the area near the right boundary
point of the interval. Thus (64):

Kxu (t, t) = 1

2
� (t, t) B (t) Q (64)

Using the result following from (46), we get the
expression located in the second line (54). If τ < t,
we obtain (65), which corresponds to the third line
(62).

Kxu (t, τ) = 1

2
� (t, τ) B (τ) Q, τ < t (65)

RETRACTED
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A special case (65) is obtained by putting τ → t

lim
τ→t

Kxu (t, τ) = B (τ) Q (66)

Hence the cross-correlation function of the output
vector y (t) and u (t) (67):

Kyu (t, τ) = C (t) Kxu (t, τ) (67)

Denote (68):

�x (t) = Kx (t, t) (68)

As a result (69):

�x (t) = E
[
x (t) xT (t)

]
(69)

Differentiating (69), we obtain (70):

d�x (t)

dt
= E

[
dx (t)

dt
xT (t)

]
+ E

[
x (t)

dxT (t)

dt

]
(70)

Substituting (44) into the first term (69), we obtain
(71):

E

[
dx (t)

dt
xT (t)

]

= E
{

[A (t) x (t) + B (t) u (t)] xT (t)
}

(71)

Using property (65) to the second term (71), we
obtain (72):

E

[
dx (t)

dt
xT (t)

]
= A (t) �x (t) + 1

2
B (t) QBT (t)

(72)

Then the dispersion matrix of the state vector x (t)
of system (44) satisfies the differential Equation (73)
with the initial condition (74):

�̇x (t) = A (t) �x (t) + �x (t) AT (t) + B (t) QBT (t)
(73)

�x (t0) = E
[
x (t0) xT (t0)

]
(74)

The dispersion equation does not contain the
received signal; therefore, it can be solved to receive
any information and used to solve the transmission
coefficients. The dispersion equation is the Riccati
matrix equation.

4. Conclusions

The recovery of athletes refers to the system of
structural support for the entire rehabilitation period.

Every athlete inevitably rolls back after injury, since
the parameters of activity are always reduced and
can be restored only under the condition of high-
quality medical care, monitoring of athletes in the
course of rehabilitation and determination of thresh-
old indicators that can be designated as achieved for
the recovery process.

The main goal of the study was to solve the
problem of identifying continuous rehabilitation pro-
cesses to determine the structure of a dynamic object
by the initial signal, the structure of its operator based
on the structural properties of linear operators, and
ordering the set of output signals of the continuous
rehabilitation process. The solution of problems of
identification and prediction of the course of con-
tinuous rehabilitation was considered for a typical
sports injury of athletes – stretching and fracture of
the knee joint, namely the final stage of its rehabil-
itation – extension. One of the main rehabilitation
parameters of knee joint and fracture is the conditions
of temperature.
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