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Abstract. The numerical control of an experimental assembly cell with two robots – termed a cognitive control unit (CCU) – is 
able to simulate human information processing at a rule-based level of cognitive control. To enable the CCU to work on a large 
range of assembly tasks expected of a human operator, the cognitive architecture SOAR is used. The CCU can plan assembly 
processes autonomously and react to ad-hoc changes in assembly sequences effectively. Extensive simulation studies have 
shown that cognitive automation based on SOAR is especially suitable for random parts supply, which reduces planning effort 
in logistics. Conversely, a disproportional increase in processing time was observed for deterministic parts supply, especially
for assemblies containing large numbers of identical parts. In this contribution, the effect of phase-shifts in deterministic part 
supply is investigated for assemblies containing maximal different parts. It can be shown that the concept of cognitive automa-
tion is as well suitable for these planning problems. 

Keywords: Cognitive automation, SOAR, Assembly, Joint cognitive systems 

                                                           
*Corresponding author. E-mail: m.mayer@iaw.rwth-aachen.de 

1.  Introduction 

Today one must conclude that especially in high-
wage countries the level of automation of many pro-
duction systems has already been taken far without 
paying sufficient attention to the specific knowledge, 
skills and abilities of the human operator. According 
to the law of diminishing returns that kind of naive 
increase in automation will likely not lead to a signif-
icant increase in productivity but can also have ad-
verse effects. Following Kinkel et al. [1] the amount 
of process errors is on average significantly reduced 
by automation, but the severity of potential conse-
quences of a single error increases disproportionately. 
These “ironies of automation” [2] can be considered 
a vicious circle [3], where a function that was allo-
cated to a human operator due to poor human relia-
bility is automated. This automation results in higher 
function complexity, ultimately increasing the cogni-
tive loads of the human operator for planning, teach-
ing and monitoring, and hence leading to a more er-
ror-prone system. To reduce the error potential one 
could again extend automation and reinforce the vi-

cious circle. During the first iteration it is quite likely 
that the overall performance of an automated system 
will increase, but the potential risk taken is often se-
verely underestimated. Additional iterations usually 
deteriorate performance and lead to poor system ro-
bustness. The novel concept of cognitive automation 
by means of simulation of human cognition aims at 
breaking this vicious circle. Based on simulated cog-
nitive functions, technical systems shall not only be 
able to (semi-)autonomously carry out manufacturing 
planning, adapt to changing supply conditions and be 
able to learn from experience but also to simulate 
goal-directed human behavior and therefore signifi-
cantly increase the conformity with operator expecta-
tions. Furthermore, cognitive automation of produc-
tion systems offers a technology that can efficiently 
and robustly automate product families with large 
numbers of variants enabling customer-oriented mass 
production. 
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2. Cognitive control unit 

In order to validate the aforementioned theory, an 
experimental assembly cell was designed [4] and a 
manufacturing scenario was developed. The scenario 
is as follows: An engineer has designed a mechanical 
part of medium complexity by composing it e.g. with 
a CAD-system containing any number of subparts. 
The task for the assembly cell’s cognitive control 
unit (CCU) is to autonomously develop and execute 
an efficient assembly sequence on the basis of the 
CAD model using the given technical resources in 
terms of robots, manipulators, changing devices, 
supplied subparts etc. 

With regard to designing and developing automat-
ed robotic systems, numerous architectures have been 
proposed as basic structures for simulating cognitive 
functions [5],[6]. These software architectures com-
bine a deliberative part for the actual planning pro-
cess (planning level) with a reactive part for direct 
control (action level). A widely used approach here is 
the three-layer model that comprises cognitive, asso-
ciative and reactive control layers [7], [8]. The lowest 
layer (reactive) contains the components that control 
information processing, and is designed to influence 
system behavior in such a way as to ensure that the 
required reference variables are achieved quickly and 
accurately. The associative layer monitors and con-
trols the system. The majority of rule-based auxiliary 
functions for automation – like process control, mon-
itoring processes and emergency processes, and ad-
aptation routines for improving system behavior – are 
all embedded here. In this top layer, the system can 
apply “reflexive” methods (e.g. planning and learn-
ing processes, model-oriented optimization processes 
and knowledge-based systems) to use knowledge 
about itself and its environment to improve its own 
behavior. 

Russel & Norwig’s three-layer model [7], was 
chosen as the basic framework for the architecture of 
the assembly cell’s CCU. However, in order to satis-
fy the demands of a holistic consideration of the hu-
man-machine system, the classic three-layer architec-
ture was expanded to include further layers and mod-
ules. 

The planning layer (deliberative layer) operates on 
a high abstraction level with symbolic problem defi-
nitions and must satisfy only soft real-time demands. 
The reactive layer, on the other hand, has to monitor 
machine-related control loops in “hard real-time”. 
The coordination layer (executive layer) mediates 
between these two layers. This is where abstract in-

structions from the planning layer are transformed 
into concrete machine control commands. In the re-
verse direction, the information from the various sen-
sors is aggregated to form an overall picture of the 
situation and is transmitted to the planning layer as a 
basis for decisions. The presentation layer as the 
most important extension to the classic three-layer 
approach forms the interface for interactive goal def-
inition and description of the task, as well as the 
presentation of the current internal state of the CCU 
to the human operator. The knowledge module con-
tains the knowledge base of the CCU in the form of 
production rules. A more detailed description can be 
found in [9]. 

The CCU as presented by Mayer et al. [10] uses 
the cognitive architecture SOAR [11] to simulate 
cognitive functions. As outlined by Mayer et al. [12], 
it is crucial for the human operator to understand the 
plan of the CCU to supervise the robotic assembly 
cell. Therefore, the question arises how the symbolic 
representation of the knowledge base of the CCU 
must be designed to ensure the conformity with the 
operator’s expectations. Proprietary programming 
languages that are used in conventional automation 
have to be learned domain specific and do not neces-
sarily match the mental model of the human operator. 
In terms of a human centered description for match-
ing the process knowledge to the mental model, one 
promising approach in this particular manufacturing 
scenario is the use of motion descriptors, since mo-
tions are familiar to the human operator from manu-
ally performed assembly tasks [13]. These motions 
are also easy to anticipate in human-robot interaction. 
Hence, already established methods or taxonomies 
for manual process planning should be used. In man-
ual assembly, it is best practice to break down com-
plex handling tasks into fundamental motion ele-
ments. To do so the very popular MTM-1 system as a 
library of fundamental movements was chosen to 
define the motion descriptors that can be used by the 
CCU to plan and execute the robotic assembly pro-
cess [14]. Further information regarding the CCU can 
be found e.g. in [9],[15]. 

3. Simulation study 

One of today’s challenges in manufacturing is the 
increasing complexity of assembly processes due to 
an increasing number of products that have to be as-
sembled in a large variety in production space [16]. 
There are numerous formal approaches to solving 
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planning tasks in different fields of application. 
Hoffmann [17] developed the Fast-Forward Planner, 
which is capable of deriving actions for given prob-
lems in deterministic operational areas. By contrast, 
other planners can handle uncertainty [18],[19]. All 
the planners mentioned are based on a symbolic 
knowledge representation. In the case of assembly 
planning, which requires the geometric relationship 
between conditions and their transitions to be ade-
quately represented, this kind of knowledge represen-
tation becomes extremely complex, even for simple 
tasks.

Whereas in conventional automation each addi-
tional product or variant significantly increases the 
organizational overhead, cognitively automated as-
sembly cells are theoretically able to autonomously 
plan, execute and replan the expected tasks on the 
basis of a digital model of the product to be assem-
bled in conjunction with a set of production rules. No 
explicit knowledge on how to solve the assembly 
problem is needed. To validate this approach a simu-
lation environment was developed using a simplified 
model of the experimental assembly cell consisting 
of a robot with a gripping device, a queue for part 
feed, a buffer for part storage and a workplace for the 
assembly of a target product [20]. 

A first simulation study investigated the influence 
of (1) the size of the product to be assembled, (2) the 
number of parts provided at the queue and (3) the 
feeding regime (two levels: deterministic supply of 
needed parts and random supply including unneeded 
parts) on processing time as well as the number of 
required pick and place operations (termed MTM-1 
cycles). The results of this study show a dispropor-
tional increase in processing time with increasing 
part size and queue length for the deterministic part 
feed (Fig. 1). Conversely, a stochastic part feed sur-
prisingly leads to a decrease in processing time over 
the queue length (Fig. 2). However, the number of 
MTM-1 cycles did not show differences between the 

deterministic and stochastic part feed. Mayer et al. 
[20] further reported that the desired target state was 
assembled correctly by the CCU in all 8,400 runs. No 
assembly errors or deadlocks did occur. Therefore, it 
can be stated that these systems allow for flexible and 
reliable assembly. 

Whereas in the previous conducted studies [20] the 
feeding regime only differentiated between stochastic 
and deterministic part feed (in the sense of directly 
mountable part supply), the focus of the study pre-
sented in the following lies on the effect of phase-
shifted part feed in case of a queue size of only one 
part. In case the parts needed in an assembly task are 
not supplied in the right order, this should have an 
effect on both dependent variables: processing time 
as well as performed MTM-1 cycles. The processing 
time is solely based on simulation time. Hence, no 
movement time of the elements of the assembly cell 
is taken into account. In close analogy to the previous 
introduced studies the following independent varia-
bles are defined: 

a) size of the target product to be assembled 
(size): six levels from four to 24 parts in 
steps of four, whereas no identical parts 
within the target product occur 

b) shape factor (type): between the two ex-
tremes of a flat structure of parts (level 1, all 
parts directly mountable) and a linear struc-
ture (level 5, parts only mountable in one 
particular order), three additional levels are 
introduced with parts distributed over multi-
ple levels (level 2: 3:1; level 3: 2:2; level 4: 
2:1:1) 

c) phase-shift (phase): based on the order nec-
essary to build up the linear structure direct-
ly, four levels from 0° (no changes to the 
order) to 270° (last 75% of the original part 
feed order are moved to start) in steps of 90° 
are defined 

   

Fig. 1: Processing time of the CCU as a function of number of parts in the target product (size) and number of parts available at the queue 
(queue) for deterministic part feed (left) and stochastic part feed (right) [20] 
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For each combination (6x5x4) of the levels of the 
independent variables 20 simulation runs were calcu-
lated. Self-developed simulation software was used. 
The runs were scheduled for parallel processing on 
the high-end Compute Cluster in the Center for 
Computing and Communication at RWTH Aachen 
University. For the dependent variables significantly 
deviate from Gaussian distribution the Sheirer-Ray-
Hare test (SRH; [21]) as a nonparametric version of a 
three-way ANOVA was used with a significance 
level of �=0.05. 

The results of the SRH test for the processing time 
are summarized in Table 1.  

Table 1 

Results of the three-way SRH test for the dependant variable pro-
cessing time 

source sum sq. df H p
size 1,014E+09 5 2111,266 <0,001 

type 4,047E+07 4 84,276 <0,001 

phase 5,629E+07 3 117,215 <0,001 

size*type 7,488E+06 20 15,594 0,741 

size*phase 5,075E+06 15 10,568 0,783 

type*phase 1,709E+07 12 35,589 <0,001 

size*type*phase 8,824E+06 60 18,375 1,000 

error 2,937E+06 2280   

total 1,152E+09 2399   

Significant effects can be identified for the inde-
pendent variable “size” (H=2111.266; df=5; p<0.001), 
“type” (H=74.317; df=4; p<0.001) and phase-shift 
(H=33.443; df=3; p<0.001). An interaction effect was 
found for the factors “type” and “phase” (H=37.473; 
df=12; p<0.001). For the interaction is completely 
disordinal, the main effects must not be interpreted 
for the factors “type” and “phase” regarding pro-
cessing time. Despite the fact, a trend can be seen for 
the processing time regarding the factors type and 
phase-shift (Figure 3). For a phase-shift of 0°, no 
influence due to the shape factor (type) can be seen. 
The processing time is approximately proportional to 
the size of the target part. With increasing phase-shift, 
the influence of the shape becomes more evident. 
Whereas the increase in processing time compared to 
type 1 does not show great differences between 
type 2, type 3 and type 4 for the phase-shifts (~12% 
on average), an average increase in processing of 
30% at 90° phase-shift, 55% at 180° phase-shift and 
78% at 180° phase-shift was observed for type 5. 

The results of the SRH test for the MTM-1 cycles 
are displayed in Table 2. 

Table 2 

Results of the three-way SRH test for the dependant variable 
MTM-1 cycle 

source sum sq. df H
size 1,056E+09 5 2213,723 <0,001 

type 3,546E+07 4 74,317 <0,001 

phase 1,595E+07 3 33,443 <0,001 

size*type 8,508E+06 20 17,835 0,598 

size*phase 3,475E+06 15 7,284 0,949 

type*phase 1,788E+07 12 37,473 <0,001 

size*type*phase 7,121E+06 60 14,926 1,000 

error 0,000E+00 2280   

total 1,145E+09 2399   

Significant effects can be identified for the inde-
pendent variable “size” (H=2213.723; df=5; p<0.001), 
“type” (H=84.276; df=4; p<0.001) and phase-shift 
(H=117.215; df=3; p<0.001). An interaction effect 
was found for the factors “type” and “phase” 
(H=35.589; df=12; p<0.001). For “phase” shows dis-
ordinal behavior regarding “type”, but “type” is ordi-
nal to “phase”, the interaction is hybrid. Hence, the 
main effect of “phase” can be interpreted. Similar to 
the results for the processing time, no influence on 
MTM-1 cycles due to the shape factor (type) can be 
seen for a phase-shift of 0°. The number of MTM-1 
cycles is proportional to the size of the target part. 
Regarding the increase of MTM-1 cycles compared 
to type 1 no differences between type 2, type 3 and 
type 4 can be observed for the phase-shifts (~12% on 
average). Conversely, an average increase in the 
number of MTM-1 cycles of 25% at 90° phase-shift, 
50% at 180° phase-shift and 75% at 180° phase-shift 
was observed for type 5. 

The presented simulation studies partially support 
the findings of Mayer et al. [20]. It could be shown, 
that the CCU is able to react to changes in part feed, 
for the observed number of MTM-1 cycles did not 
exceed theoretical expectations and further corre-
sponds to the observed simulation time of the CCU. 
In contrast to the aforementioned studies the part 
feed can be considered deterministic, as only need 
parts were contained. However, the difference here 
lies in the target state (which consisted of maximal 
number of different parts) as well as the queue size 
(only one part at a time). In case of increased number 
of parts on the queue a disproportional increase in 
processing time is to be expected. 
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Fig. 3: Dependent variables processing time (left) and MTM-1 cycles (right) as a function of the independent variables “phase”, “size” and 
“type” 

4. Summary and Outlook 

Especially in highly automated manufacturing sys-
tems that are aiming at producing products in almost 
any variety in product space, an increase in conven-
tional automation will not necessarily lead to a sig-

nificant increase in productivity. Therefore, novel 
concepts towards proactive, agile and versatile manu-
facturing systems have to be developed. Cognitive 
automation is a promising approach to improve pro-
active system behavior as it could be shown by the 
results presented within this paper. 

To be able to accomplish complex assembly tasks 
without impairing the CCU with calculations that 

M.P. Mayer et al. / Cognitively Automated Assembly Processes
3453



cannot be solved in polynomial time, future investi-
gations will focus on a hybrid approach [22] where 
the predefined planning problem is solved prior to 
the assembly by generating a state graph [23] that 
describes all possible assembly sequences for the 
intended product. This graph can also be updated 
during assembly. The reasoning component within 
SOAR uses this state graph to adapt the plan to the 
actual state of the assembly and part supply. 
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