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Abstract. Ergonomic sleep studies benefit from long-term monitoring in the home environment to cope with daily variations 
and habituation effects. Polysomnography allows to asses sleep accurately, but is costly, time-consuming and possibly disturb-
ing for the sleeper. Actigraphy is cheap and user friendly, but for many studies lacks accuracy and detailed information. This 
proof-of-concept study investigates Least-Squares Support Vector Machines as a tool for automatic sleep stage classification 
(Wake-N1-Rem to N2-N3 separation), using automatic trainingset-specific filtered features as derived from three easy to regis-
ter signals, namely heart rate, breathing rate and movement. The algorithms are trained and validated using 20 nights out of a 
600 night database from over 100 different healthy persons. Different training and test set strategies were analyzed leading to 
different results. The more person-specific the training nights to the test nights, the better the classification accuracy as vali-
dated against the hypnograms scored by experts from the full polysomnograms. In the limit of complete person-specific train-
ing, the accuracy of the algorithm on the test set reached 94%. This means that this algorithm could serve its use in long-term 
monitoring sleep studies in the home environment, especially when prior person-specific polysomnographic training is per-
formed.  
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1.  Introduction 

Although sleep research has been around for al-
most a hundred years [1], there is still a huge need for 
studies looking at the influence of environmental 
effects on sleep, both from a physiological as a psy-
chological point of view. In general, these studies 
would benefit from long-term monitoring. 

Polysomnography [2,3] allows to asses sleep accu-
rately, but is costly and time-consuming to apply in 
long-term studies. Due to the extensive amount of 
sensors attached to the sleeper’s body, it could also 
disturb the normal sleep pattern, both before and dur-
ing the night [4]. Although habituation takes place 

after consecutive nights, letting the sleeper return to 
its normal sleep patterns, in most cases only the first 
night is disregarded from experimental analysis (due 
to cost and time). Habituation might however take 
longer than this so-called ‘first-night effect’ [5].  

Actigraphy [6] on the other hand is both cheap and 
user-friendly for long-term studies, but for many stu-
dies lacks not only detailed information due to its 
ability to only distinguish between sleep and wake 
states, but also accuracy due its low specificity in 
detecting wake states [7]. No other methods reached 
the point beyond prototype or have been sufficiently 
validated to fill the gap in between [8].  

Work 41 (2012) 1985-1989 
DOI: 10.3233/WOR-2012-0419-1985 
IOS Press 

1051-9815/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

1985



This study investigates the use of Least-Squares 
Support Vector Machines (LS-SVM) as a tool for 
automatic sleep stage classification, validating their 
ability to classify sleep with gold standard polysom-
nography. 

SVM theory [9] is a supervised learning method 
that analyzes data and recognizes patterns. Per data 
point in time or space, called a vector, a set of prede-
fined variables is collected, called features. Based on 
these so-called feature vectors, the algorithm predicts 
which of the two possible classes the input is a mem-
ber of. It does this with the help of a set of training 
examples, each belonging to one of two categories, 
upon which the algorithm builds the binary classifica-
tion model. With the help of kernels and weights, it 
automatically transforms the multi-dimensional fea-
ture space, making it a nonlinear-classification tool. 

The strength of LS-SVMs [10] is their quadratic 
computational dependence on the amount of features, 
compared to their cubic dependence on the amount of 
vectors. As long as the amount of features is kept 
smaller than the amount of vectors, extra features can 
easily be added without increasing the computational 
cost. This makes the method easy to expand and im-
prove, because the more relevant features present, the 
better the classification will be. 

In order to have a user-friendly tool in long-term 
monitoring sleep studies, easy to register signals 
should be used. This study uses features calculated 
from three easy to register signals. Firstly heart and 
breathing rate, two physiological signals coupled to 
the autonomic nervous system, of which variations in 
sympathetic and parasympathetic activation are 
known to correlate well with variations in sleep stag-
es [16,17,18]. And secondly movement, of which its 
link with sleep and wake states is extensively re-
searched in the domain of actigraphy [6,19]. 

Not only can all of these three signals be registered 
using a strap similar to the ones in classical heart rate 
monitors used for sports, they can even potentially be 
measured off-body in the bedding system itself, e.g. 
using upper body pressure mats [11,12], force sensors 
in the bed legs [13] or optical fibers in the bed cover 
[14]. Firstly, this would avoid disturbing the person 
during or preceding his or her sleep, both physically 
and mentally. Secondly, it would allow for autonom-
ous working, so that it can easily be used in long-
term studies, even at home. Measurements like these 
were already used in attempts to analyze sleep 
[11,12]. 

2. Methods 

2.1. Subjects 

During a four year project, about 100 subjects par-
ticipated in different sleep studies, leading to a data-
base of 605 different nights. All were volunteers free 
from medical problems that would interfere with 
normal sleep. All studies were approved by the Ethics 
Committee of the Vrije Universiteit Brussel. A subset 
of 20 nights was selected for this proof-of-concept 
study, from a total of 10 subjects between the age of 
19 and 30 years old (22.95 ± 2.74 y).  

2.2. Procedures 

From the subset of 20 nights, three different train-
ing and test set combinations were constructed to 
analyze the effect of more and more person-specific 
training information. Table 1 lists an overview of the 
amount of different nights and different subjects used 
in each combination.  

 
Table 1  

Overview of different training and test set combinations. 
 A B C 
# training nights 8 5 3 
# test nights 4 3 1 
# subjects training nights 5 3 1 
# subjects test nights 4 3 1 

 
In combination A, the training set contained nights 

from different subjects compared to those from the 
test set. This was done to evaluate zero person-
specific training. In combination B, from every night 
from a subject in the test set, there was at least one 
night from that same subject in the training set. Final-
ly in combination C, all nights in the training set were 
from the same subject as the nights in the test set re-
sulting in complete person-specific training.  

2.3. Measurements 

For all nights in the projects database, complete 
polysomnographic recordings were performed using 
the Medatec Dream System (Medatec nv., Brussels, 
Belgium), after which sleep stages were classified by 
experts according to AASM rules [3]. Additionally, 
heart rate was registered through ECG, breathing rate 
using two respiratory belts (one at the chest area and 
one at the abdomen) and movement by taking differ-
ences in mattress indentation as measured with one 
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second resolution by the Custom8 DynaSleep system 
(Custom8, Leuven, Belgium) [15].  

2.4. Data Analysis 

Heart rate (HR), breathing rate (BR) and move-
ment (MOV) were scaled to unit mean to ensure a 
better inter-person working of the algorithm.  

HR and BR were manually synchronized with the 
MOV signal based on the differences in amplitude of 
the raw breathing signal, as measured by the respira-
tory belts when the person was moving. Since sleep 
stages in a hypnogram, as scored according to AASM 
rules, only have a resolution of an epoch of length 30 
seconds, this manual synchronization is more than 
precise enough.  

Different variables, averaged over different sizes 
of epoch intervals, were defined based on these three 
signals: mean, variance, different percentiles and ap-
proximate entropy of HR and BR, frequency intervals 
and ratios between frequency intervals of HR and BR, 
time to previous and to future movements using dif-
ferent movement thresholds to distinguish between 
different movement sizes. 

Using a significant clustering algorithm, a subset 
of semi-uncorrelated features is extracted from the 
complete feature set based specifically on the data 
from the training set and the targeted binary classifi-
cation. This is done by calculating the mean and va-
riance across all epochs for every feature, separately 
for each of the two classes. This allows to estimate 
the significance by which those two means differ 
from each other using statistics. This simple feature 
filtering not only suppresses noise on the future clas-
sification results, but also enables to learn which fea-
tures are more relevant than others.  

In this study, a simple Wake-N1-Rem versus N2-
N3 classification is targeted. A set of 1000 epochs 
from each of the two classes was used to train the LS-
SVM algorithm’s parameters using grid search and 
10-fold cross validation. Epochs were selected based 
on having maximum entropy in the complete set of 
2000 feature vectors, in order to ensure a complete 
representation of the total training set. The same was 
done for the test sets.  

Sensitivity, specificity and accuracy parameters 
were calculated for all three combinations using an 
epoch-by-epoch agreement analysis between the 
AASM-scored epochs and the resulting classification 
by the trained LS-SVM algorithm. Accuracy was 
calculated as the percentage total agreement, sensitiv-
ity as the percentage correctly identified Wake-N1-

Rem epochs and specificity as the percentage correct-
ly identified N2-N3 epochs. For extra information, 
accuracies on all 20 complete nights were also calcu-
lated using each of the three trained LS-SVM algo-
rithms. 

 

3. Results 

Table 2, 3 and 4 list the results from training and 
test set combination A, B and C respectively. Firstly, 
the 10-fold cross-validated accuracy on the 2000 fea-
ture vectors of the training set. Secondly, the accura-
cy, sensitivity and specificity on the complete set of 
2000 feature vectors from the test set. Thirdly, the 
accuracies on the complete nights of training and test 
set. Finally for extra information, the accuracy on the 
set of nights not present in training or test set for that 
specific combination. For combination A, these are 
nights from subjects also present in the training night 
selection; while for combination B and C, they are 
from subjects not present in the training night selec-
tion.  

Table 2  
Results for combination A. 

Accuracy training set 94.20% 
Accuracy test set 75.96% 
Sensitivity test set 68.38% 
Specificity test set 83.55% 
Accuracy complete training nights 94.47 ± 2.31 %  
Accuracy complete test nights 78.56 ± 10.57 % 
Accuracy non-selected nights 89.39 ± 3.00 % 

 
Table 3  

Results for combination B. 
Accuracy training set 94.90% 
Accuracy test set 82.00% 
Sensitivity test set 77.30% 
Specificity test set 86.70% 
Accuracy complete training nights 95.58 ± 1.26 %  
Accuracy complete test nights 85.00 ± 3.61 % 
Accuracy non-selected nights 79.87 ± 5.16 % 

 
Table 4  

Results for combination C. 
Accuracy training set 94.11% 
Accuracy test set 94.25% 
Sensitivity test set 90.80% 
Specificity test set 97.70% 
Accuracy complete training nights 93.15 ± 1.53 %  
Accuracy complete test nights 91.48 ± 0.00 % 
Accuracy non-selected nights 81.09 ± 4.89 % 
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4. Discussion 

4.1. Combination A 

The results of table 2 show a very high accuracy 
on the training set (94.20%) as on the complete train-
ing nights (94.47%). This is not surprising since 
epochs from the same nights are used for training the 
classifier, thus for every epoch in a training night, 
there will always be an epoch close by that was used 
in the training set itself. Feature values from that 
epoch won’t be too much different from the ones 
nearby, thus giving rise to the good results. However, 
this is still a good indicator that the feature variables 
defined are able to separate the multi-dimensional 
feature space between Wake-N1-Rem and N2-N3 
well, thus confirming that HR, BR and MOV are not 
just randomly changing over sleep stages but have a 
certain pattern towards different sleep stages. 

A reasonable accuracy was also found for the test 
set (75.96%) as on the complete test nights (78.56%), 
mainly due to a good specificity (83.55%), but lack-
ing sensitivity (68.38%). This is however a better 
result than having a high sensitivity but lacking speci-
ficity, because once the classifier indicates an epoch 
as Wake-N1-Rem, one can at least be reasonably sure 
that this is correct. Sensitivity can possibly be in-
creased afterwards using window-filters, filling in 
gaps between close-by-scored Wake-N1-Rem epochs, 
which hasn’t been tried nor implemented yet. The 
high standard deviation on the accuracy of the full 
test nights (10.57%) indicates that some nights or 
some subjects are better or worse for automatic clas-
sifications than others.  

Compared to other classification algorithms found 
in literature, converting their listed results to reflect 
the same binary classification, the results described 
here are on the same level. A heart rate based classi-
fication algorithm led to an accuracy of 73.27% [20], 
whereas an algorithm using peripheral arterial tone 
and actigraphy reached an accuracy of 80.56% [21]. 
Important to also consider are inter- and intra-scorer 
variations during golden standard manual scoring of 
polysomnographic measurements. One publication 
e.g. gives a compared accuracy between two expert 
scorers of only 85.93% on the same binary classifica-
tion [22], thus lowering the threshold for having good 
classification results. Automatic algorithms also have 
reproducible results and are consistent in mistakes 
they make. 

4.2. Combination B 

The results of table 3 show again the high accuracy 
on the training set (94.90%) and complete training 
nights (95.58%). For the test set the same trend is 
present of having a better specificity (86.70%) than 
sensitivity (77.30%), leading to accuracies of 82.00% 
on test set and 85.00% on complete test nights. Val-
ues on all test set parameters are higher than in com-
bination A, indicating that using more person-specific 
information leads to better classification possibilities.  

This time, smaller standard deviations are present 
compared to combination A. This could either mean 
that no difficult-to-score nights or subjects were 
present in the test set, or that due to information from 
all subjects being present in the training set, classifi-
cation was better overall. 

4.3. Combination C 

The results of table 4 clearly indicate that training 
person-specific leads to better classification. The ac-
curacy percentage on the test set (94.25%) even be-
comes equal to the training set value (94.11%), indi-
cating that not much difference in feature values must 
have been present between training and test nights for 
the same sleep stages.  

4.4. General 

In the current algorithm both information from 
past, present and future epochs is used, since some 
feature variables are defined having averaged values 
over different symmetric interval lengths around the 
current epoch. This is of no problem when only eval-
uation of sleep quality is required.  

However, limiting the algorithm to only use past 
and present epoch information, or maybe just infor-
mation from a maximum amount of epochs towards 
the future, will possibly enable it to steer different 
devices depending on the sleep state of the person. 
Future work will investigate how much this would 
deteriorate current classification results, and with 
which time resolution transitions between different 
sleep stages can be detected. 

Further investigation will also consist of extending 
the data set for better validation and extending the 
sleep classification towards a full hypnogram. 
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5. Conclusion 

Overall, results obtained look promising towards 
use in long-term studies, especially when person-
specific training on the basis of polysomnography is 
possible. 
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