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Abstract. Currently, there is a trend in nuclear power plants (NPPs) toward introducing digital and computer technologies into 
main control rooms (MCRs). Safe generation of electric power in NPPs requires reliable performance of cognitive tasks such 
as fault detection, diagnosis, and response planning. The digitalization of MCRs has dramatically changed the whole operating 
environment, and the ways operators interact with the plant systems. If the design and implementation of the digital technology 
is incompatible with operators’ cognitive characteristics, it may have negative effects on operators’ cognitive reliability. 
Firstly, on the basis of three essential prerequisites for successful cognitive tasks, a causal model is constructed to reveal the 
typical human performance issues arising from digitalization. The cognitive mechanisms which they impact cognitive reliabili-
ty are analyzed in detail. Then, Bayesian inference is used to quantify and prioritize the influences of these factors. It suggests 
that interface management and unbalanced workload distribution have more significant impacts on operators’ cognitive relia-
bility. 
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1.  Introduction 

Main control rooms (MCRs) are crucial stations 
for supervising and controlling the nuclear power 
plants (NPPs). Conventional MCRs are dominated by 
analog equipments, such as electromechanical 
switches, panel-mounted meters, annunciators, chart 
recorders, etc. Nowadays, with the progress of com-
puter and digital technologies, analog equipments are 
being replaced with modern digital human system 
interfaces (HSIs), including computer-based informa-
tion display system, computer-based soft control sys-
tem, computerized operating procedures, intelligent 
decision support system, and so on. 

The use of advanced technology is generally con-
sidered to improve the safety of NPPs, however, if 
poorly designed and implemented, it may have the 
potential to affect human performance and reduce 
human reliability [11]. The MCRs and HSIs digitali-

zation has dramatically changed the whole operating 
environment, the role of operators, and the ways they 
interact with the systems. The objective of this re-
search is to investigate critical human performance 
problems arising from digitalization, analyze the 
cognitive mechanisms which they impact operators’ 
cognitive reliability, and measure the effects of them. 

2. Theoretical basis for the model 

From an information-processing view, human 
cognition can be conceptualized as a series of mental 
operation process which is based on received infor-
mation. Any variation, failing, or weakness in these 
mental operations will impact human cognitive relia-
bility. Norman and Bobrow characterized human 
cognitive processes as being limited by either the 
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adequacy of available cognitive resources or the 
quality of available data [10].  

The availability of cognitive resources determined 
by factors such as attention bandwidth, memory ca-
pacity, perception and response channels, and so on. 
Operators’ tasks often require concurrent mental op-
erations, and each operation requires some cognitive 
resources. When resources demands exceed the 
available supply, the task performance will degrade. 
In this situation, the cognitive process is called re-
source-limited. 

The availability and quality of data is determined 
by what is being processed. When there is a lack of 
necessary information, performance also will be li-
mited. In this situation, the cognitive process is called 
data-limited. It can be further subdivided into signal 
data limits and memory data limits. Signal data limit 
means operators can’t get enough required informa-
tion from the human-machine interface or environ-
ment. It may result from poor interface design or low 
signal-to-noise ratio, etc. Memory data limit does not 
describe the amount of memory, but the nature of 
knowledge stored in the memory, as the quality of 
those stored knowledge influence the processing of 
new information.   

Human error can be explained on the basis of a 
relatively small number of cognitive elements and 
mechanism [15,16]. According to above cognitive 
processing limits theory, operators’ cognition relia-
bility mainly depends on the availability of cognitive 
resources, the availability and quality of necessary 
control information about the NPPs, and the correct-

ness and completeness of knowledge or schema 
stored in operators’ memory. The mechanism which 
MCRs digitalization can affect human reliability is 
chiefly through them. 

3. Construction of the causal model 

Through interview, field investigation, and litera-
ture review, typical human factor issues arising from 
digitalization have been identified. They include in-
creased cognitive workload due to interface man-
agement task, difficulty in understanding how sys-
tems work due to increased complexity and opacity, 
loss of vigilance and skill due to high level of auto-
mation, difficulty in navigating through computer-
based information system, and so on. These factors 
may tax human cognitive resources, corrupt opera-
tors’ schema or mental model, and negatively impact 
their information acquisition activities. Fig.1 shows 
their cause and effect relationships. 

3.1. Factors affecting the quality of information 
acquisition 

3.1.1. Inappropriate trust in automation 
Operators’ reliance or trust level in automation 

systems is a very important human-machine relation-
ship. It determines operators’ attitudes toward the 
automations. Operators tend to trust more reliable, 
robust, familiar, and predictable systems [18]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                          Figure 1. A causal model of factors influencing cognitive reliability in digital MCRs    
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In digital MCR, there exist factors which can both 
increase and decrease operators’ trust level. For ex-
ample, the opacity and complexity of the systems 
will degrade operators’ trust level, but the high relia-
bility of the computer and digital systems will en-
hance it, and the latter becomes more obvious. 

Inappropriate automation trust can make operators 
omit the necessary information. Over-trust or over-
reliance on the automated systems can result in vigil-
ance decrements, and make operator act as a passive 
monitor [5,14]. On the contrary, operators who have 
under-trust in automation tend to falsely reject infor-
mation, even when the information is correct and 
important.  

3.1.2. Keyhole effect 
In conventional MCRs, there are many spatially 

dedicated indicators and displays. Each of them has 
fixed locations. Operators can physically navigate to 
plant information by shifting their attention. In digital 
MCRs, information about the plant is made available 
to operators only through the computerized HSIs. An 
important property of the computer-based display 
systems is that the viewport size is very small relative 
to the large size of the data space. Most of the infor-
mation is hidden from view. The amount of informa-
tion that can be accessed at one time is extremely 
small. This property has been referred to as the key-
hole effect [21]. The consequence of the keyhole 
effect is that it restrict operators’ perceptual field, and 
impair their ability to perceive plants’ information.  

3.1.3. Information overload 
In digital MCRs, advanced technologies have 

greatly increased the ability to collect, transmit, and 
transform data. Computer-based information systems 
can generate and display various data in detail, such 
as process control data, maintenance and engineering 
data, configuration data, and so on. Although opera-
tors can get various data from the information sys-
tems, they must find and choose the required infor-
mation from a large amount of information. Opera-
tors often feel overloaded by the overwhelming 
amount of information. Information overload poses a 
great challenge for information intake. As human can 
only take in a limited amount of information at a time, 
when the amount of presented information are far 
beyond the eye and brain can handle it, significant 
lapses in attention or information omission errors will 
occur. 

3.2. Factors affecting the correctness and 
completeness of cognitive schema 

3.2.1. Increased Complexity of Technical System 
Operators’ cognitive schema is the internal repre-

sentation of the physical and functional characteris-
tics of the plant system and its operation, such as 
physical appearance and layout of control panel, 
causal relations among plant’s components, systems 
dynamics, how systems operate, and so on. The more 
complex the system is, the more difficult the schema 
construction becomes. Compared with conventional 
MCRs, the digital MCRs appear to be more simple 
and compact, but in reality they have become more 
complex. The introduction of new technologies such 
as intelligent agents, information processing support, 
and software-mediated interface, etc, not only in-
crease the number of components throughout the 
plant, but also make the opacity and coupling of the 
systems to the highest level. There are hundreds of 
subsystems which interact under different situations. 
If the schema in operators’ mind is incomplete or has 
fault, then their interpretation and diagnosis about the 
plant’s state will be wrong.  

3.2.2. Knowledge and skill degradation due to high-
level automation 

Operators’ cognitive schema is constructed and 
updated mainly through formal education, special 
training, and accumulation of operational experience. 
The adoption of high level of automation can assist 
the operators and minimize their workload, but they 
also have negative effects. Firstly, operators who 
control the highly automated systems often have a 
limited knowledge and understanding of systems’ 
behavior [19]. Operators may not actively try to con-
struct the schema of the automation systems due to 
overreliance. Secondly, many tasks and functions 
once performed by operators have now been highly 
automated. Operators’ schema becomes as inert 
knowledge, and can not maintain its correctness and 
completeness due to the lack of opportunities to prac-
tice and renew.  

3.3.  Factors influencing availability of cognitive 
resources 

3.3.1. Mental workload transitions 
In digital MCRs, advanced automation and com-

puter systems can execute the greater part of the tasks. 
The role of operator has changed from an active con-
troller to a passive observer. During normal operating 
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situation, operators may face prolonged periods of 
low workload. However, in accident conditions, es-
pecially when operator must simultaneously take up 
manual control due to automation failure, their work-
load may jump sharply.  

The sudden transitions between extreme low work-
load and critical high workload can cause cognitive 
cost and performance degradation. Firstly, the low 
workload state which immediately subsequent to the 
high workload state, may make the short-term memo-
ry buffer continue to be overloaded even after the 
workload shift downward [3]. Secondly, sudden 
workload transition can induce psychological stress, 
and result in shrinkage of cognitive resources. Third-
ly, although operators are capable of maintaining 
performance across workload transitions by using 
various adaptive methods such as effort regulation or 
changing resource allocation strategy [4,20], adapta-
tion to workload transitions itself will consume men-
tal resources, and may result in fatigue after-effects. 
Besides, the inappropriate resource allocation strate-
gy can also reduce the available cognitive resources. 

3.3.2. Interface management tasks 
The primary tasks performed by nuclear power 

plant operators are process monitoring and control. 
However, in digital MCRs, HSIs are computer-based. 
Operators can not directly interact with the plant an-
ymore. To perform the monitoring and control task, 
operators must actively interact with the compute-
rized interface, and need to perform interface man-
agement tasks including searching for data, navigat-
ing through displays, configuring interfaces, scaling 
windows, etc.  

The interface management tasks can impose addi-
tional mental burden on operators. Firstly, managing 
the interface can increase operators’ workload. Ac-
cording to multiple resources model [22], the inter-
face management tasks and the primary tasks often 
rely on the same type of cognitive resources such as 
the same sensory channel and processing structure. 
Interface management draw  cognitive resources 
away from the primary task and thereby make it re-
source limited. Secondly, interface management tasks 
often distract operators’ attention, and interfere with 
their limited memory buffer. The distraction or inter-
ruption may cause waste of cognitive resources. 
Thirdly, since the allowed response time under acci-
dent conditions is limited, managing the interface can 
increase operator’s time pressure, and finally lead to 
attention narrowing or reduction in working memory 
capacity [12].  

3.3.3. Task interruption 
The Task interruption widely exists in the multi-

tasking environment [1]. In digital MCRs, this prob-
lem becomes more serious. Firstly, there are more 
competing tasks resulting from additional interface 
management. Managing the interface shall break the 
continuity of cognitive focus on the primary task. 
Operators must often suspend one task so that anoth-
er task can be performed. Secondly, the inappropriate 
allocation of human-machine function can also cause 
task interruption. One of the main trends in MCRs 
design is an increase in automation of tasks which 
traditionally performed by the operator [13]. If the 
implementation of automation technology does not 
consider whether a function should be automated 
with respect to operator’s capability, their tasks will 
be poorly organized and lacking consistency. 

Interruption diverts operator’s attention from on-
going task, forces him to turn his attention towards 
the interruption, and then refocuses on the previous 
task. Switching among multiple concurrent tasks may 
consume a mass of attention resources. Interruption 
also creates prospective memory demands because 
individual must remember to resume the interrupted 
task after the end of the interruption [2]. Besides, task 
interruption and task switching can result in extra 
time cost [9]. Operator may experience a greater feel-
ing of time pressure. 

4.  Quantitative Analysis of the Causal Model by 
Using Bayesian Network 

4.1. Bayesian networks 

Bayesian network, also is known as Bayesian Be-
lief Network, belongs to the family of probabilistic 
graphical models [6]. Consider a Bayesian network 
over 1{ ,..., }nU X X� , where 1,..., nX X represent nodes. 
Then the joint probability distribution ( )P U is the 
product of all potentials specified in U  [7]. 

 
 

1

( ) ( ( ))
n

i i
i

P U P X pa X
�

��                                   (1) 

Where ( )ipa X are the parents of node iX . The 
marginal probability of iX is: 

( ) ( )
i

i
except X

P X P U� �                                           (2) 
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One of main applications of Bayesian network is 
as an inference engine for calculating the probability 
of an event given the observation of other events, 
called evidence. Assume an evidence e is found, we 
can calculate the probability of the occurrence of an 
event given some evidences through the following 
formula. 

\{ }
( , )

( )
( )

iU X
i

P U e
P X e

P e
�
�

                               (3) 

Where X U� , \{ }iU X represent the rest variables 
inU except iX , and  

1 1

( , ) ( ( ))i i

n m

j
i j

P U e P X pa X e
� �

�� �                      (4) 

4.2. Estimation of the prior probability and 
conditional probability of each node 

Before conducting Bayesian inference, the prior 
probability or conditional probability of each node in 
Fig. 1 should be specified. Since the digitalization of 
MCRs has only been implemented for a short period 

of time, there is a lack of enough historical human 
error data. Here, the values of prior and conditional 
probabilities are obtained by using engineering 
judgment method. As it is often difficult for human 
to estimate the occurrence possibility of events by 
using single numerical probability, the fuzzy expres-
sion of their opinions about the probabilities of 
events is used. The advantage of using fuzzy proba-
bilities is that it is more intuitive for experts to give 
their opinions, and can reduce judgment biases. For 
simplicity, triangular form membership function is 
adopted to describe all fuzzy probabilities.    

Table 1 gives the fuzzy prior probabilities of root 
nodes in Fig. 1. As shown in Table 1, there are three 
substates for each of these nodes, for example, the 
substates which describe the severity of “workload 
transition (WT)” include “severe”, “moderate”, and 
“minor”. The occurrence likelihood of them is de-
fined by experts as a triangular fuzzy number such 
as 1( ) (0.06,0.10,0.14)P WT � . Table 2 gives the 
conditional fuzzy probabilities of variable “task inter-
ruption frequency (TI)” given the states of nodes “in-
terface management task (IM)” and “Function alloca-
tion of human-machines and task design (FA)”. 

Table 1   

Fuzzy prior probabilities of root nodes  
Variables Substates and probabilities 

Workload transition(WT) 
Severe(WT1) Moderate(WT2) Minor(WT3) 
(0.06,0.10,0.14) (0.78,0.87,0.96) (0.02,0.03,0.04) 
0.10 0.87 0.03 

Interface management(IM) 
Complicated(IM1) Acceptable(IM2) Simple(IM3) 
(0.08,0.12,0.16) (0.76,0.87,0.98) (0.009,0.01,0.011) 
0.12 0.87 0.01 

Function allocation of 
human-machines and task 
design(FA) 

Inappropriate(FA1) Moderate(FA2) Suitable(FA3) 
(0.01,0.04,0.07) (0.28,0.54,0.80) (0.36,0.42,0.48) 
0.04 0.54 0.42 

Automation trust level(AT) 
Under-trust(AT1) Adequate(AT2) Over-trust(AT3) 
(0.02,0.05,0.08) (0.75,0.85,0.95) (0.08,0.10,0.12) 
0.05 0.85 0.10 

Information overload(IO) 
Serious(IO1) Moderate (IO2) Minor(IO3) 
(0.05,0.08,0.11) (0.79,0.88,0.97) (0.02,0.04,0.06) 
0.08 0.88 0.04 

Keyhole effect and infor-
mation acquisition bottle-
neck(KE) 

Severe(KE1) Acceptable(KE2) Minor(KE3) 
(0.10,0.12,0.14) (0.79,0.86,0.93) (0.01,0.02,0.03) 
0.12 0.86 0.02 

Level of complexity for 
technical systems(LC) 

High(LC1) Medium(LC2) Low(LC3) 
(0.05,0.10,0.15) (0.78,0.87,0.96) (0.01,0.03,0.05) 
0.10 0.87 0.03 

Knowledge degradations 
(KD) 

Severe(KD1) Moderate(KD2) Minor(KD3) 
(0.02,0.10,0.18) (0.74,0.86,0.98) (0.02,0.04,0.06) 
0.10 0.86 0.04 
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Table 2   

Conditional probability of variable�Task Interruption (TI)�P(TI�IM, FA) 

Variables Substates and probabilities 
Interface management de-
mand (IM) 

(IM1) (IM2) (IM3) 

Function allocation between 
human-machines and task 
design (FA) 

(FA1) (FA2) (FA3) (FA1) (FA2) (FA3) (FA1) (FA2) (FA3) 

Task inter-
ruption 
frequency 
(TI) 

High(TI1) 0.95 0.74 0.58 0.47 0.28 0.17 0.30 0.14 0.10 

Medium(TI2) 0.03 0.18 0.28 0.42 0.50 0.53 0.42 0.20 0.10 

Low(TI3) 0.02 0.08 0.14 0.11 0.22 0.30 0.28 0.66 0.80 

In order to conduct Bayesian inference, it is neces-
sary to transform fuzzy linguistic probabilities into 
crisp probabilities. In this paper, fuzzy prior probabil-
ities and fuzzy conditional probabilities are trans-
formed into crisp values by using center of gravity 
defuzzification technique [17,23]. 

( ) ( )
3

i i i i
i i

u l m lF l� � �
� �                                   (5) 

Where il , im , and iu respectively represent the 
lower least likely value, the most likely valve, and the 
upper least likely value. For example, the fuzzy lin-
guistic probability of “severe” for variable “workload 
transition (WT)” is (0.06, 0.10, 0.14). It can be trans-
formed into crisp values as follows: 

(0.14 0.06) (0.10sev 0.06)( )
3

0.06 0.

e

0

er

1

P WT � � �
� �

����������������������������� �

 

The transformed values of all the prior probabili-
ties are expressed with bold fonts shown in the Table 
1. The conditional probabilities shown in table 2 are 
all crisp values. 

4.3. Bayesian Inference and Results Analysis 

The inference process is done by calculating the 
probability distribution of a variable given the obser-
vation of other variables, and then updating the prob-
ability distributions of unobserved variable. The cal-
culations can be performed manually according to Eq. 
(1)-(4), or by using software tools like MSBNX [8]. 
Although Bayesian inference can be used to conduct 
various types of analysis, this paper mainly discusses 
predictive inference and diagnostic inference. 

4.3.1. Predictive Inference 
Predictive inference is also called forward infe-

rence. It reasons from new information about causes 
to new beliefs about effects. Supposing that all  
root nodes obey the initial probability distributions 
generated by experts, then the probability of each 
intermediate variable are obtained by using Eq. (2). 
For example, supposing that “the frequency of task 
interruption (TI)” is “high (TI1)”, then the probability 
of TI1 can be computed as follows: 

   

1 1 1 1 1 1

1 2 1 1 2

1 3 1 1 3

2 1 1 2 1

2 2 1 2 2

2 3 1 2 3

3 1

( ) ( ) [ ( ) ( , )]

( ) [ ( ) ( , )]

( ) [ ( ) ( , )]

( ) [ ( ) ( , )]

( ) [ ( ) ( , )]

( ) [ ( ) ( , )]

( ) [ (

P TI P IM P FA P TI IM FA

P IM P FA P TI IM FA

P IM P FA P TI IM FA

P IM P FA P TI IM FA

P IM P FA P TI IM FA

P IM P FA P TI IM FA

P IM P FA

� 	 	

� 	 	

� 	 	

� 	 	

� 	 	

� 	 	

� 	 1 3 1

3 2 1 3 2

3 3 1 3 3

) ( , )]

( ) [ ( ) ( , )]

( ) [ ( ) ( , )]
0.12 (0.04 0.95 0.54 0.74 0.42 0.58)
0.87 (0.04 0.47 0.54 0.28 0.42 0.17)
0.01 (0.04 0.30 0.54 0.14 0.42 0.10)
0.081744 0.2

P TI IM FA

P IM P FA P TI IM FA

P IM P FA P TI IM FA

	

� 	 	

� 	 	

� 	 	 � 	 � 	
� 	 	 � 	 � 	
� 	 	 � 	 � 	
� � 10018 0.001296 0.293058� �

 

Similarly, 
2 3( ) 0.470758, ( ) 0.236192P TI P TI� � .  

Assuming that “workload transition” is “severe”, 
“interface management” is “complicated”, “function 
allocation” is “inappropriate”, “automation trust lev-
el” is “over-trust”, “information overload” is “se-
rious”, “keyhole effect” is “severe”, “levels of com-
plexity” is “high”, and “knowledge degradation” is 
“severe”, then through predictive inference, we can  
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Table 3   

  The change rates between the prior probabilities and the posterior probabilities 

Variable states WT1 IM1 FA1 AT3 IO1 KE1 LC1 KD1 

Prior probabilities 0.10 0.12 0.04 0.10 0.08 0.12 0.10 0.10 

Posterior probabilities 0.109356 0.134335 0.040412 0.106307 0.083891 0.128383 0.106183 0.105683 

Change rates (%) 9.356 11.945 1.031 6.307 4.864 6.9858 6.183 5.683 

get the probability of “cognitive reliability (CR)”, 
1( " ") 0.8227P CR low� � , 2( " di ") 0.1606P CR me um� � , 

3( " ") 0.0167P CR high� � . 

4.3.2. Diagnostic inference 
Diagnostic inference is also called backward infe-

rences. It reasons from symptoms or effects to its 
causes. The objective of diagnostic inference is to 
calculate the occurrence likelihood of some causes 
given certain consequences. Supposing it is observed 
that “low level of cognitive reliability (CR1)” occurs, 
then according to Eq. (3)-(4)�the probabilities of its 
causes “interface management (IM)” can be calculated 
as follows: 

1
1\{ }

1 1
1

( , )
( )

( )
U IM

P U CR
P IM IM CR CR

P CR
� � �

�  

1 1
1\{ } \{ }

1

( , )

( , ) ( , )

( , , ) ( , , )

( , ) ( , , )
( ) ( ) ( ) ( ) ( )
(

( , )

) ( ) ( )

U IM U IM
P TI IM FA

P CG IM TI P TP IM TI

P CG CW TP WT P IA AT IO

P

KE

P MS LC KD P CR IA CG MS
P IM P FA P WT P AT

U CR

P IO
P KE P LC P KD
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As every variable has three possible substates, the 
calculation process is a bit complicated. Here, the 
MSBNX software is used to implement diagnostic 
inference. As shown on row 3 and column 3 in Table 
3, 1 1 0.13433( ) 5P IM IM CR CR� � � , Similarly� the 
occurrence probabilities of other causes for CR1 can be 
obtained. The results are specified in the third row of 
the Table 3. 

Comparing the posterior probabilities of root nodes 
variables with the prior probabilities, the change rates 
about the occurrence likelihood of each root variable 
can be seen obviously. As shown in Table 3, the 
change    rates   in     “interface   management”     and  

“workload transition” are more significant than other 
variables. Once the “cognitive reliability level (CR)”  
is “low”, it is more likely that the “interface manage-
ment” related errors are the main causes.  

5. Conclusions 

The introduction of computer and digital technolo-
gies into NPPs may negatively impact human  
cognition and behavior. To mitigate the negative con-
sequences imposed by digitalization, there is a need 
for revealing the nature of these human performance 
issues. According to the resource-limited and data-
limited theory, typical human factors issues which 
may degrade operators’ cognitive performance are 
evaluated. The results show that the “interface man-
agement tasks” exert the greatest impact upon opera-
tors’ cognitive reliability. The “workload transition” 
comes next. Other issues such as “keyhole effect”, 
“automation over-trust”, and “complexity of technical 
systems” also have considerable effects on operators. 

The investigation and analysis of these human fac-
tors issues are helpful to gaining insights for taking 
probable measures to enhance human reliability. For 
instance, to minimize the adverse effects of “interface 
management” and “workload transition”, it is crucial 
to provide special training about multitask manage-
ment skills and workload regulation strategies. Be-
sides�the MCRs designers should not base only on 
the capability of technologies, they must pay more 
attention to the human factors issues, and need to con-
tinually modify or improve the system designs 
through applications of cognitive ergonomics. 
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